main.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The script to run these models.
"""
import argparse
import timeit
import paddle.fluid as fluid
from data_loader import KBloader
from evalutate import Evaluate
from model import model_dict
from mp_mapper import mp_reader_mapper
from pgl.utils.logger import log


def run_round(batch_iter,
              program,
              exe,
              fetch_list,
              epoch,
              prefix="train",
              log_per_step=1000):
    """
    Run the program for one epoch.
    :param batch_iter: the batch_iter of prepared data.
    :param program: the running program, train_program or test program.
    :param exe: the executor of paddle.
    :param fetch_list: the variables to fetch.
    :param epoch: the epoch number of train process.
    :param prefix: the prefix name, type `string`.
    :param log_per_step: log per step.
    :return: None
    """
    batch = 0
    tmp_epoch = 0
    loss = 0
    tmp_loss = 0
    run_time = 0
    data_time = 0
    t2 = timeit.default_timer()
    for batch_feed_dict in batch_iter():
        batch += 1
        t1 = timeit.default_timer()
        data_time += (t1 - t2)
        batch_fetch = exe.run(program,
                              fetch_list=fetch_list,
                              feed=batch_feed_dict)
        if prefix == "train":
            loss += batch_fetch[0]
            tmp_loss += batch_fetch[0]
        if batch % log_per_step == 0:
            tmp_epoch += 1
            if prefix == "train":
                log.info("Epoch %s Ava Loss %s" %
                         (epoch + tmp_epoch, tmp_loss / batch))
            else:
                log.info("Batch %s" % batch)
            batch = 0
            tmp_loss = 0

        t2 = timeit.default_timer()
        run_time += (t2 - t1)

    if prefix == "train":
        log.info("GPU run time {}, Data prepare extra time {}".format(
            run_time, data_time))
        log.info("Epoch %s \t All Loss %s" % (epoch + tmp_epoch, loss))


def train(args):
    """
    Train the knowledge graph embedding model.
    :param args: all args.
    :return: None
    """
    kgreader = KBloader(
        batch_size=args.batch_size,
        data_dir=args.data_dir,
        neg_mode=args.neg_mode,
        neg_times=args.neg_times)
    if args.model in model_dict:
        Model = model_dict[args.model]
    else:
        raise ValueError("No model for name {}".format(args.model))
    model = Model(
        data_reader=kgreader,
        hidden_size=args.hidden_size,
        margin=args.margin,
        learning_rate=args.learning_rate,
        args=args,
        optimizer=args.optimizer)

    def iter_map_wrapper(data_batch, repeat=1):
        """
        wrapper for multiprocess reader
        :param data_batch: the source data iter.
        :param repeat: repeat data for multi epoch
        :return: iterator of feed data
        """

        def data_repeat():
            """repeat data for multi epoch"""
            for i in range(repeat):
                for d in data_batch():
                    yield d

        reader = mp_reader_mapper(
            data_repeat,
            func=kgreader.training_data_map,
            #func=kgreader.training_data_no_filter,
            num_works=args.sample_workers)

        return reader

    def iter_wrapper(data_batch, feed_list):
        """
        Decorator of make up the feed dict
        :param data_batch: the source data iter.
        :param feed_list: the feed list (names of variables).
        :return: iterator of feed data.
        """

        def work():
            """work"""
            for batch in data_batch():
                feed_dict = {}
                for k, v in zip(feed_list, batch):
                    feed_dict[k] = v
                yield feed_dict

        return work

    loader = fluid.io.DataLoader.from_generator(
        feed_list=model.train_feed_vars, capacity=20, iterable=True)

    places = fluid.cuda_places() if args.use_cuda else fluid.cpu_places()
    exe = fluid.Executor(places[0])
    exe.run(model.startup_program)
    exe.run(fluid.default_startup_program())

    prog = fluid.CompiledProgram(model.train_program).with_data_parallel(
        loss_name=model.train_fetch_vars[0].name)

    if args.only_evaluate:
        s = timeit.default_timer()
        fluid.io.load_params(
            exe, dirname=args.checkpoint, main_program=model.train_program)
        Evaluate(kgreader).launch_evaluation(
            exe=exe,
            reader=iter_wrapper(kgreader.test_data_batch,
                                model.test_feed_list),
            fetch_list=model.test_fetch_vars,
            program=model.test_program,
            num_workers=10)
        log.info(timeit.default_timer() - s)
        return None

    batch_iter = iter_map_wrapper(
        kgreader.training_data_batch,
        repeat=args.evaluate_per_iteration, )
    loader.set_batch_generator(batch_iter, places=places)

    for epoch in range(0, args.epoch // args.evaluate_per_iteration):
        run_round(
            batch_iter=loader,
            exe=exe,
            prefix="train",
            # program=model.train_program,
            program=prog,
            fetch_list=model.train_fetch_vars,
            log_per_step=kgreader.train_num // args.batch_size,
            epoch=epoch * args.evaluate_per_iteration)
        log.info("epoch\t%s" % ((1 + epoch) * args.evaluate_per_iteration))
        if True:
            fluid.io.save_params(
                exe, dirname=args.checkpoint, main_program=model.train_program)
            eva = Evaluate(kgreader)
            eva.launch_evaluation(
                exe=exe,
                reader=iter_wrapper(kgreader.test_data_batch,
                                    model.test_feed_list),
                fetch_list=model.test_fetch_vars,
                program=model.test_program,
                num_workers=10)


def main():
    """
    The main entry of all.
    :return: None
    """
    parser = argparse.ArgumentParser(
        description="Knowledge Graph Embedding for PGL")
    parser.add_argument('--use_cuda', action='store_true', help="use_cuda")
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        type=str,
        help='the directory of dataset',
        default='./data/WN18/')
    parser.add_argument(
        '--model',
        dest='model',
        type=str,
        help="model to run",
        default="TransE")
    parser.add_argument(
        '--learning_rate',
        dest='learning_rate',
        type=float,
        help='learning rate',
        default=0.001)
    parser.add_argument(
        '--epoch', dest='epoch', type=int, help='epoch to run', default=400)
    parser.add_argument(
        '--sample_workers',
        dest='sample_workers',
        type=int,
        help='sample workers',
        default=4)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        type=int,
        help="batch size",
        default=1000)
    parser.add_argument(
        '--optimizer',
        dest='optimizer',
        type=str,
        help='optimizer',
        default='adam')
    parser.add_argument(
        '--hidden_size',
        dest='hidden_size',
        type=int,
        help='embedding dimension',
        default=50)
    parser.add_argument(
        '--margin', dest='margin', type=float, help='margin', default=4.0)
    parser.add_argument(
        '--checkpoint',
        dest='checkpoint',
        type=str,
        help='directory to save checkpoint directory',
        default='output/')
    parser.add_argument(
        '--evaluate_per_iteration',
        dest='evaluate_per_iteration',
        type=int,
        help='evaluate the training result per x iteration',
        default=50)
    parser.add_argument(
        '--only_evaluate',
        dest='only_evaluate',
        action='store_true',
        help='only do the evaluate program',
        default=False)
    parser.add_argument(
        '--adv_temp_value', type=float, help='adv_temp_value', default=2.0)
    parser.add_argument('--neg_times', type=int, help='neg_times', default=1)
    parser.add_argument(
        '--neg_mode', type=bool, help='return neg mode flag', default=False)

    args = parser.parse_args()
    log.info(args)
    train(args)


if __name__ == '__main__':
    main()