message_passing.py 7.8 KB
Newer Older
F
fengshikun01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements some common message passing 
functions to help building graph neural networks.
"""

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L
from pgl.utils import paddle_helper

__all__ = ['copy_send', 'weighted_copy_send', 'mean_recv', 
        'sum_recv', 'max_recv', 'lstm_recv', 'graphsage_sum',
        'graphsage_mean', 'pinsage_mean', 'pinsage_sum', 
        'softmax_agg', 'msg_norm']


def copy_send(src_feat, dst_feat, edge_feat):
    """doc"""
    return src_feat["h"]

def weighted_copy_send(src_feat, dst_feat, edge_feat):
    """doc"""
    return src_feat["h"] * edge_feat["weight"]

def mean_recv(feat):
    """doc"""
F
fengshikun01 已提交
40
    return L.sequence_pool(feat, pool_type="average")
F
fengshikun01 已提交
41 42 43 44


def sum_recv(feat):
    """doc"""
F
fengshikun01 已提交
45
    return L.sequence_pool(feat, pool_type="sum")
F
fengshikun01 已提交
46 47 48 49


def max_recv(feat):
    """doc"""
F
fengshikun01 已提交
50
    return L.sequence_pool(feat, pool_type="max")
F
fengshikun01 已提交
51 52


F
fengshikun01 已提交
53
def lstm_recv(hidden_dim):
F
fengshikun01 已提交
54
    """doc"""
F
fengshikun01 已提交
55
    def lstm_recv_inside(feat):
F
fengshikun01 已提交
56
        forward, _ = L.dynamic_lstm(
F
fengshikun01 已提交
57
            input=feat, size=hidden_dim * 4, use_peepholes=False)
F
fengshikun01 已提交
58
        output = L.sequence_last_step(forward)
F
fengshikun01 已提交
59 60
        return output
    return lstm_recv_inside
F
fengshikun01 已提交
61 62 63 64 65 66 67


def graphsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(copy_send, nfeat_list=[("h", feature)])
    neigh_feature = gw.recv(msg, sum_recv)
    self_feature = feature
F
fengshikun01 已提交
68
    self_feature = L.fc(self_feature,
F
fengshikun01 已提交
69 70 71 72 73 74
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
F
fengshikun01 已提交
75
    neigh_feature = L.fc(neigh_feature,
F
fengshikun01 已提交
76 77 78 79 80 81
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
F
fengshikun01 已提交
82 83
    output = L.concat([self_feature, neigh_feature], axis=1)
    output = L.l2_normalize(output, axis=1)
F
fengshikun01 已提交
84 85 86 87 88 89 90 91
    return output


def graphsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(copy_send, nfeat_list=[("h", feature)])
    neigh_feature = gw.recv(msg, mean_recv)
    self_feature = feature
F
fengshikun01 已提交
92
    self_feature = L.fc(self_feature,
F
fengshikun01 已提交
93 94 95 96 97 98
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
F
fengshikun01 已提交
99
    neigh_feature = L.fc(neigh_feature,
F
fengshikun01 已提交
100 101 102 103 104 105
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
F
fengshikun01 已提交
106 107
    output = L.concat([self_feature, neigh_feature], axis=1)
    output = L.l2_normalize(output, axis=1)
F
fengshikun01 已提交
108 109 110 111 112 113 114 115
    return output


def pinsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
    neigh_feature = gw.recv(msg, mean_recv)
    self_feature = feature
F
fengshikun01 已提交
116
    self_feature = L.fc(self_feature,
F
fengshikun01 已提交
117 118 119 120 121 122
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
F
fengshikun01 已提交
123
    neigh_feature = L.fc(neigh_feature,
F
fengshikun01 已提交
124 125 126 127 128 129
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
F
fengshikun01 已提交
130 131
    output = L.concat([self_feature, neigh_feature], axis=1)
    output = L.l2_normalize(output, axis=1)
F
fengshikun01 已提交
132 133 134 135 136 137 138 139
    return output


def pinsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
    neigh_feature = gw.recv(msg, sum_recv)
    self_feature = feature
F
fengshikun01 已提交
140
    self_feature = L.fc(self_feature,
F
fengshikun01 已提交
141 142 143 144 145 146
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
F
fengshikun01 已提交
147
    neigh_feature = L.fc(neigh_feature,
F
fengshikun01 已提交
148 149 150 151 152 153
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
F
fengshikun01 已提交
154 155
    output = L.concat([self_feature, neigh_feature], axis=1)
    output = L.l2_normalize(output, axis=1)
F
fengshikun01 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    return output
    
    
def softmax_agg(beta):
    """Implementation of softmax_agg aggregator, see more information in the paper
    "DeeperGCN: All You Need to Train Deeper GCNs"
    (https://arxiv.org/pdf/2006.07739.pdf)

    Args:
        msg: the received message, lod-tensor, (batch_size, seq_len, hidden_size)
        beta: Inverse Temperature

    Return:
        An output tensor with shape (num_nodes, hidden_size)
    """
    
    def softmax_agg_inside(msg):
        alpha = paddle_helper.sequence_softmax(msg, beta)
        msg = msg * alpha
F
fengshikun01 已提交
175
        return L.sequence_pool(msg, "sum")
F
fengshikun01 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    
    return softmax_agg_inside


def msg_norm(x, msg, name):
    """Implementation of message normalization, see more information in the paper
    "DeeperGCN: All You Need to Train Deeper GCNs"
    (https://arxiv.org/pdf/2006.07739.pdf)

    Args:
        x: centre node feature (num_nodes, feature_size)
        msg: neighbor node feature (num_nodes, feature_size)
        name: name for s

    Return:
        An output tensor with shape (num_nodes, feature_size)
    """
F
fengshikun01 已提交
193
    s = L.create_parameter(
F
fengshikun01 已提交
194 195 196 197 198 199
            shape=[1],
            dtype='float32',
            default_initializer=
                fluid.initializer.ConstantInitializer(value=1.0),
            name=name + '_s_msg_norm')

F
fengshikun01 已提交
200 201 202
    msg = L.l2_normalize(msg, axis=1)
    x_norm = L.reduce_sum(x * x, dim=1, keep_dim=True)
    x_norm = L.sqrt(x_norm)
F
fengshikun01 已提交
203 204 205
    msg = msg * x_norm * s
    return msg