base_dataloader.py 4.2 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base DataLoader 
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import os
import sys
import six
from io import open
from collections import namedtuple
import numpy as np
import tqdm
import paddle
from pgl.utils import mp_reader
import collections
import time

import pgl

if six.PY3:
    import io
    sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
    sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')


def batch_iter(data, perm, batch_size, fid, num_workers):
    """node_batch_iter
    """
    size = len(data)
    start = 0
    cc = 0
    while start < size:
        index = perm[start:start + batch_size]
        start += batch_size
        cc += 1
        if cc % num_workers != fid:
            continue
        yield data[index]


def scan_batch_iter(data, batch_size, fid, num_workers):
    """node_batch_iter
    """
    batch = []
    cc = 0
    for line_example in data.scan():
        cc += 1
        if cc % num_workers != fid:
            continue
        batch.append(line_example)
        if len(batch) == batch_size:
            yield batch
            batch = []

    if len(batch) > 0:
        yield batch


class BaseDataGenerator(object):
    """Base Data Geneartor"""

    def __init__(self, buf_size, batch_size, num_workers, shuffle=True):
        self.num_workers = num_workers
        self.batch_size = batch_size
        self.line_examples = []
        self.buf_size = buf_size
        self.shuffle = shuffle

    def batch_fn(self, batch_examples):
        """ batch_fn batch producer"""
        raise NotImplementedError("No defined Batch Fn")

    def batch_iter(self, fid, perm):
        """ batch iterator"""
        if self.shuffle:
            for batch in batch_iter(self, perm, self.batch_size, fid,
                                    self.num_workers):
                yield batch
        else:
            for batch in scan_batch_iter(self, self.batch_size, fid,
                                         self.num_workers):
                yield batch

    def __len__(self):
        return len(self.line_examples)

    def __getitem__(self, idx):
        if isinstance(idx, collections.Iterable):
            return [self[bidx] for bidx in idx]
        else:
            return self.line_examples[idx]

    def generator(self):
        """batch dict generator"""

        def worker(filter_id, perm):
            """ multiprocess worker"""

            def func_run():
                """ func_run """
                pid = os.getpid()
                np.random.seed(pid + int(time.time()))
                for batch_examples in self.batch_iter(filter_id, perm):
                    batch_dict = self.batch_fn(batch_examples)
                    yield batch_dict

            return func_run

        # consume a seed
        np.random.rand()
        if self.shuffle:
            perm = np.arange(0, len(self))
            np.random.shuffle(perm)
        else:
            perm = None
        if self.num_workers == 1:
            r = paddle.reader.buffered(worker(0, perm), self.buf_size)
        else:
            worker_pool = [
                worker(wid, perm) for wid in range(self.num_workers)
            ]
            worker = mp_reader.multiprocess_reader(
                worker_pool, use_pipe=True, queue_size=1000)
            r = paddle.reader.buffered(worker, self.buf_size)

        for batch in r():
            yield batch

    def scan(self):
        for line_example in self.line_examples:
            yield line_example