reader.py 5.8 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
import os
import sys
Y
Yelrose 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
import numpy as np
import pickle as pkl
import paddle
import paddle.fluid as fluid
import socket
import pgl
import time

from pgl.utils import mp_reader
from pgl.utils.logger import log
from pgl import redis_graph


def node_batch_iter(nodes, node_label, batch_size):
    """node_batch_iter
    """
    perm = np.arange(len(nodes))
    np.random.shuffle(perm)
    start = 0
    while start < len(nodes):
        index = perm[start:start + batch_size]
        start += batch_size
        yield nodes[index], node_label[index]


def traverse(item):
    """traverse
    """
    if isinstance(item, list) or isinstance(item, np.ndarray):
        for i in iter(item):
            for j in traverse(i):
                yield j
    else:
        yield item


def flat_node_and_edge(nodes, eids):
    """flat_node_and_edge
    """
    nodes = list(set(traverse(nodes)))
    eids = list(set(traverse(eids)))
    return nodes, eids


def worker(batch_info, graph_wrapper, samples):
    """Worker
    """

    def work():
        """work
        """
        redis_configs = [{
            "host": socket.gethostbyname(socket.gethostname()),
            "port": 7430
        }, ]
        graph = redis_graph.RedisGraph("sub_graph", redis_configs, 64)
        first = True
        for batch_train_samples, batch_train_labels in batch_info:
            start_nodes = batch_train_samples
            nodes = start_nodes
            eids = []
            eid2edges = {}
            for max_deg in samples:
                pred, pred_eid = graph.sample_predecessor(
                    start_nodes, max_degree=max_deg, return_eids=True)
                for _dst, _srcs, _eids in zip(start_nodes, pred, pred_eid):
                    for _src, _eid in zip(_srcs, _eids):
                        eid2edges[_eid] = (_src, _dst)

                last_nodes = nodes
                nodes = [nodes, pred]
                eids = [eids, pred_eid]
                nodes, eids = flat_node_and_edge(nodes, eids)
                # Find new nodes
                start_nodes = list(set(nodes) - set(last_nodes))
                if len(start_nodes) == 0:
                    break

L
liweibin 已提交
94
            subgraph = graph.subgraph(nodes=nodes, eid=eids, edges=[ eid2edges[e] for e in eids])
Y
Yelrose 已提交
95 96 97 98 99 100 101 102 103 104 105 106
            sub_node_index = subgraph.reindex_from_parrent_nodes(
                batch_train_samples)
            feed_dict = graph_wrapper.to_feed(subgraph)
            feed_dict["node_label"] = np.expand_dims(
                np.array(
                    batch_train_labels, dtype="int64"), -1)
            feed_dict["node_index"] = sub_node_index
            yield feed_dict

    return work


L
liweibin 已提交
107 108
def multiprocess_graph_reader(
                              graph_wrapper,
Y
Yelrose 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
                              samples,
                              node_index,
                              batch_size,
                              node_label,
                              num_workers=4):
    """multiprocess_graph_reader
    """

    def parse_to_subgraph(rd):
        """parse_to_subgraph
        """

        def work():
            """work
            """
            last = time.time()
            for data in rd():
                this = time.time()
                feed_dict = data
                now = time.time()
                last = now
                yield feed_dict

        return work

    def reader():
        """reader"""
        batch_info = list(
            node_batch_iter(
                node_index, node_label, batch_size=batch_size))
        block_size = int(len(batch_info) / num_workers + 1)
        reader_pool = []
        for i in range(num_workers):
            reader_pool.append(
L
liweibin 已提交
143
                worker(batch_info[block_size * i:block_size * (i + 1)], 
Y
Yelrose 已提交
144 145 146 147 148 149 150
                       graph_wrapper, samples))
        multi_process_sample = mp_reader.multiprocess_reader(
            reader_pool, use_pipe=True, queue_size=1000)
        r = parse_to_subgraph(multi_process_sample)
        return paddle.reader.buffered(r, 1000)

    return reader()
L
liweibin 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

def load_data():
    """
        data from https://github.com/matenure/FastGCN/issues/8
        reddit.npz: https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J
        reddit_index_label is preprocess from reddit.npz without feats key.
    """
    data_dir = os.path.dirname(os.path.abspath(__file__))
    data = np.load(os.path.join(data_dir, "data/reddit_index_label.npz"))

    num_class = 41

    train_label = data['y_train']
    val_label = data['y_val']
    test_label = data['y_test']

    train_index = data['train_index']
    val_index = data['val_index']
    test_index = data['test_index']

    return {
        "train_index": train_index,
        "train_label": train_label,
        "val_label": val_label,
        "val_index": val_index,
        "test_index": test_index,
        "test_label": test_label,
        "num_class": 41
    }

def get_iter(args, graph_wrapper, mode):
    data = load_data()
    train_iter = multiprocess_graph_reader(
        graph_wrapper,
        samples=args.samples,
        num_workers=args.num_sample_workers,
        batch_size=args.batch_size,
        node_index=data['train_index'],
        node_label=data["train_label"])
    return train_iter

if __name__ == '__main__':
    for e in train_iter():
        print(e)