# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import parl.layers as layers from paddle import fluid from paddle.fluid.param_attr import ParamAttr from parl.framework.model_base import Model class MujocoModel(Model): def __init__(self, obs_dim, act_dim, init_logvar=-1.0): self.policy_model = PolicyModel(obs_dim, act_dim, init_logvar) self.value_model = ValueModel(obs_dim, act_dim) self.policy_lr = self.policy_model.lr self.value_lr = self.value_model.lr def policy(self, obs): return self.policy_model.policy(obs) def policy_sample(self, obs): return self.policy_model.sample(obs) def value(self, obs): return self.value_model.value(obs) class PolicyModel(Model): def __init__(self, obs_dim, act_dim, init_logvar): self.obs_dim = obs_dim self.act_dim = act_dim hid1_size = obs_dim * 10 hid3_size = act_dim * 10 hid2_size = int(np.sqrt(hid1_size * hid3_size)) self.lr = 9e-4 / np.sqrt(hid2_size) self.fc1 = layers.fc(size=hid1_size, act='tanh') self.fc2 = layers.fc(size=hid2_size, act='tanh') self.fc3 = layers.fc(size=hid3_size, act='tanh') self.fc4 = layers.fc(size=act_dim, act='tanh') self.logvars = layers.create_parameter( shape=[act_dim], dtype='float32', default_initializer=fluid.initializer.ConstantInitializer( init_logvar)) def policy(self, obs): hid1 = self.fc1(obs) hid2 = self.fc2(hid1) hid3 = self.fc3(hid2) means = self.fc4(hid3) logvars = self.logvars() return means, logvars def sample(self, obs): means, logvars = self.policy(obs) sampled_act = means + ( layers.exp(logvars / 2.0) * # stddev layers.gaussian_random(shape=(self.act_dim, ), dtype='float32')) return sampled_act class ValueModel(Model): def __init__(self, obs_dim, act_dim): super(ValueModel, self).__init__() hid1_size = obs_dim * 10 hid3_size = 5 hid2_size = int(np.sqrt(hid1_size * hid3_size)) self.lr = 1e-2 / np.sqrt(hid2_size) self.fc1 = layers.fc(size=hid1_size, act='tanh') self.fc2 = layers.fc(size=hid2_size, act='tanh') self.fc3 = layers.fc(size=hid3_size, act='tanh') self.fc4 = layers.fc(size=1) def value(self, obs): hid1 = self.fc1(obs) hid2 = self.fc2(hid1) hid3 = self.fc3(hid2) V = self.fc4(hid3) V = layers.squeeze(V, axes=[]) return V