# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- import gym from gridworld import CliffWalkingWapper, FrozenLakeWapper from agent import QLearningAgent import time def run_episode(env, agent, render=False): total_steps = 0 # 记录每个episode走了多少step total_reward = 0 obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.sample(obs) # 根据算法选择一个动作 next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互 # 训练 Q-learning算法 agent.learn(obs, action, reward, next_obs, done) obs = next_obs # 存储上一个观察值 total_reward += reward total_steps += 1 # 计算step数 if render: env.render() #渲染新的一帧图形 if done: break return total_reward, total_steps def test_episode(env, agent): total_reward = 0 obs = env.reset() while True: action = agent.predict(obs) # greedy next_obs, reward, done, _ = env.step(action) total_reward += reward obs = next_obs time.sleep(0.5) env.render() if done: print('test reward = %.1f' % (total_reward)) break def main(): # env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up # env = FrozenLakeWapper(env) env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left env = CliffWalkingWapper(env) agent = QLearningAgent( obs_n=env.observation_space.n, act_n=env.action_space.n, learning_rate=0.1, gamma=0.9, e_greed=0.1) is_render = False for episode in range(500): ep_reward, ep_steps = run_episode(env, agent, is_render) print('Episode %s: steps = %s , reward = %.1f' % (episode, ep_steps, ep_reward)) # 每隔20个episode渲染一下看看效果 if episode % 20 == 0: is_render = True else: is_render = False # 训练结束,查看算法效果 test_episode(env, agent) if __name__ == "__main__": main()