# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import parl from parl import layers class AtariModel(parl.Model): def __init__(self, act_dim, algo='DQN'): self.act_dim = act_dim self.conv1 = layers.conv2d( num_filters=32, filter_size=5, stride=1, padding=2, act='relu') self.conv2 = layers.conv2d( num_filters=32, filter_size=5, stride=1, padding=2, act='relu') self.conv3 = layers.conv2d( num_filters=64, filter_size=4, stride=1, padding=1, act='relu') self.conv4 = layers.conv2d( num_filters=64, filter_size=3, stride=1, padding=1, act='relu') self.algo = algo if algo == 'Dueling': self.fc1_adv = layers.fc(size=512, act='relu') self.fc2_adv = layers.fc(size=act_dim) self.fc1_val = layers.fc(size=512, act='relu') self.fc2_val = layers.fc(size=1) else: self.fc1 = layers.fc(size=act_dim) def value(self, obs): obs = obs / 255.0 out = self.conv1(obs) out = layers.pool2d( input=out, pool_size=2, pool_stride=2, pool_type='max') out = self.conv2(out) out = layers.pool2d( input=out, pool_size=2, pool_stride=2, pool_type='max') out = self.conv3(out) out = layers.pool2d( input=out, pool_size=2, pool_stride=2, pool_type='max') out = self.conv4(out) out = layers.flatten(out, axis=1) if self.algo == 'Dueling': As = self.fc2_adv(self.fc1_adv(out)) V = self.fc2_val(self.fc1_val(out)) Q = As + (V - layers.reduce_mean(As, dim=1, keep_dim=True)) else: Q = self.fc1(out) return Q