Create Customized Algorithms =============================== Goal of this tutorial: - Learn how to implement your own algorithms. Overview ----------- To build a new algorithm, you need to inherit class ``parl.Algorithm`` and implement three basic functions: ``sample``, ``predict`` and ``learn``. Methods ----------- - ``__init__`` As algorithms update weights of the models, this method needs to define some models inherited from ``parl.Model``, like ``self.model`` in this example. You can also set some hyperparameters in this method, like learning_rate, reward_decay and action_dimension, which might be used in the following steps. - ``predict`` This function defines how to choose actions. For instance, you can use a policy model to predict actions. - ``sample`` Based on ``predict`` method, ``sample`` generates actions with noises. Use this method to do exploration if needed. - ``learn`` Define loss function in ``learn`` method, which will be used to update weights of ``self.model``. Example: DQN -------------- This example shows how to implement DQN algorithm based on class ``parl.Algorithm`` according to the steps mentioned above. Within class ``DQN(Algorithm)``, we define the following methods: - \_\_init\_\_(self, model, act_dim=None, gamma=None, lr=None) We define ``self.model`` and ``self.target_model`` of DQN in this method, which are instances of class ``parl.Model``. And we also set hyperparameters act_dim, gamma and lr here. We will use these parameters in ``learn`` method. .. code-block:: python def __init__(self, model, act_dim=None, gamma=None, lr=None): """ DQN algorithm Args: model (parl.Model): model defining forward network of Q function act_dim (int): dimension of the action space gamma (float): discounted factor for reward computation. lr (float): learning rate. """ self.model = model self.target_model = copy.deepcopy(model) assert isinstance(act_dim, int) assert isinstance(gamma, float) assert isinstance(lr, float) self.act_dim = act_dim self.gamma = gamma self.lr = lr - predict(self, obs) We use the forward network defined in ``self.model`` here, which uses observations to predict action values directly. .. code-block:: python def predict(self, obs): """ use value model self.model to predict the action value """ return self.model.value(obs) - learn(self, obs, action, reward, next_obs, terminal) ``learn`` method calculates the cost of value function according to the predict value and the target value. ``Agent`` will use the cost to update weights in ``self.model``. .. code-block:: python def learn(self, obs, action, reward, next_obs, terminal): """ update value model self.model with DQN algorithm """ pred_value = self.model.value(obs) next_pred_value = self.target_model.value(next_obs) best_v = layers.reduce_max(next_pred_value, dim=1) best_v.stop_gradient = True target = reward + ( 1.0 - layers.cast(terminal, dtype='float32')) * self.gamma * best_v action_onehot = layers.one_hot(action, self.act_dim) action_onehot = layers.cast(action_onehot, dtype='float32') pred_action_value = layers.reduce_sum( layers.elementwise_mul(action_onehot, pred_value), dim=1) cost = layers.square_error_cost(pred_action_value, target) cost = layers.reduce_mean(cost) optimizer = fluid.optimizer.Adam(self.lr, epsilon=1e-3) optimizer.minimize(cost) return cost - sync_target(self) Use this method to synchronize the weights in ``self.target_model`` with those in ``self.model``. This is the step used in DQN algorithm. .. code-block:: python def sync_target(self, gpu_id=None): """ sync weights of self.model to self.target_model """ self.model.sync_weights_to(self.target_model)