# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import torch import torch.nn as nn from wrapper import VecNormalize def get_vec_normalize(venv): if isinstance(venv, VecNormalize): return venv elif hasattr(venv, 'venv'): return get_vec_normalize(venv.venv) return None def update_linear_schedule(optimizer, epoch, total_num_epochs, initial_lr): """Decreases the learning rate linearly""" lr = initial_lr - (initial_lr * (epoch / float(total_num_epochs))) for param_group in optimizer.param_groups: param_group['lr'] = lr def init(module, weight_init, bias_init, gain=1): weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module