# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.fluid as fluid import parl from parl import layers from parl.utils import machine_info class AtariAgent(parl.Agent): def __init__(self, algorithm, obs_shape, act_dim, learn_data_provider=None): assert isinstance(obs_shape, (list, tuple)) assert isinstance(act_dim, int) self.obs_shape = obs_shape self.act_dim = act_dim super(AtariAgent, self).__init__(algorithm) if learn_data_provider: self.learn_reader.decorate_tensor_provider(learn_data_provider) self.learn_reader.start() def build_program(self): self.sample_program = fluid.Program() self.predict_program = fluid.Program() self.learn_program = fluid.Program() with fluid.program_guard(self.sample_program): obs = layers.data( name='obs', shape=self.obs_shape, dtype='float32') self.sample_actions, self.behaviour_logits = self.alg.sample(obs) with fluid.program_guard(self.predict_program): obs = layers.data( name='obs', shape=self.obs_shape, dtype='float32') self.predict_actions = self.alg.predict(obs) with fluid.program_guard(self.learn_program): obs = layers.data( name='obs', shape=self.obs_shape, dtype='float32') actions = layers.data(name='actions', shape=[], dtype='int64') behaviour_logits = layers.data( name='behaviour_logits', shape=[self.act_dim], dtype='float32') rewards = layers.data(name='rewards', shape=[], dtype='float32') dones = layers.data(name='dones', shape=[], dtype='float32') lr = layers.data( name='lr', shape=[1], dtype='float32', append_batch_size=False) entropy_coeff = layers.data( name='entropy_coeff', shape=[], dtype='float32') self.learn_reader = fluid.layers.create_py_reader_by_data( capacity=32, feed_list=[ obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff ]) obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff = fluid.layers.read_file( self.learn_reader) vtrace_loss, kl = self.alg.learn(obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff) self.learn_outputs = [ vtrace_loss.total_loss, vtrace_loss.pi_loss, vtrace_loss.vf_loss, vtrace_loss.entropy, kl ] self.learn_program = parl.compile(self.learn_program, vtrace_loss.total_loss) def sample(self, obs_np): """ Args: obs_np: a numpy float32 array of shape ([B] + observation_space). Format of image input should be NCHW format. Returns: sample_ids: a numpy int64 array of shape [B] """ obs_np = obs_np.astype('float32') sample_actions, behaviour_logits = self.fluid_executor.run( self.sample_program, feed={'obs': obs_np}, fetch_list=[self.sample_actions, self.behaviour_logits]) return sample_actions, behaviour_logits def predict(self, obs_np): """ Args: obs_np: a numpy float32 array of shape ([B] + observation_space) Format of image input should be NCHW format. Returns: sample_ids: a numpy int64 array of shape [B] """ obs_np = obs_np.astype('float32') predict_actions = self.fluid_executor.run( self.predict_program, feed={'obs': obs_np}, fetch_list=[self.predict_actions])[0] return predict_actions def learn(self): total_loss, pi_loss, vf_loss, entropy, kl = self.fluid_executor.run( self.learn_program, fetch_list=self.learn_outputs) return total_loss, pi_loss, vf_loss, entropy, kl