# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gym import numpy as np import parl from parl.env.atari_wrappers import wrap_deepmind, MonitorEnv, get_wrapper_by_cls from collections import defaultdict @parl.remote_class class Actor(object): def __init__(self, config): self.config = config env = gym.make(config['env_name']) self.env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW') def step(self, action): obs, reward, done, info = self.env.step(action) return obs, reward, done def reset(self): obs = self.env.reset() return obs def get_metrics(self): metrics = defaultdict(list) monitor = get_wrapper_by_cls(self.env, MonitorEnv) if monitor is not None: for episode_rewards, episode_steps in monitor.next_episode_results( ): metrics['episode_rewards'].append(episode_rewards) metrics['episode_steps'].append(episode_steps) return metrics