# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.nn as nn from parl.core.model_base import ModelBase from parl.utils import machine_info __all__ = ['Model'] class Model(nn.Module, ModelBase): """ | `alias`: ``parl.Model`` | `alias`: ``parl.core.torch.agent.Model`` | ``Model`` is a base class of PARL for the neural network. A ``Model`` is usually a policy or Q-value function, which predicts an action or an estimate according to the environmental observation. | To use the ``PyTorch`` backend model, user needs to call ``super(Model, self).__init__()`` at the beginning of ``__init__`` function. | ``Model`` supports duplicating a ``Model`` instance in a pythonic way: | ``copied_model = copy.deepcopy(model)`` Example: .. code-block:: python import parl import torch.nn as nn class Policy(parl.Model): def __init__(self): super(Policy, self).__init__() self.fc = nn.Linear(in_features=100, out_features=32) def policy(self, obs): out = self.fc(obs) return out policy = Policy() copied_policy = copy.deepcopy(model) Attributes: model_id(str): each model instance has its unique model_id. Public Functions: - ``sync_weights_to``: synchronize parameters of the current model to another model. - ``get_weights``: return a list containing all the parameters of the current model. - ``set_weights``: copy parameters from ``set_weights()`` to the model. - ``forward``: define the computations of a neural network. **Should** be overridden by all subclasses. """ def __init___(self): super(Model, self).__init__() def sync_weights_to(self, target_model, decay=0.0): """Synchronize parameters of current model to another model. target_model_weights = decay * target_model_weights + (1 - decay) * current_model_weights Args: target_model (`parl.Model`): an instance of ``Model`` that has the same neural network architecture as the current model. decay (float): the rate of decline in copying parameters. 0 if no parameters decay when synchronizing the parameters. Example: .. code-block:: python import copy # create a model that has the same neural network structures. target_model = copy.deepcopy(model) # after initializing the parameters ... model.sync_weights_to(target_model) Note: Before calling ``sync_weights_to``, parameters of the model must have been initialized. """ assert not target_model is self, "cannot copy between identical model" assert isinstance(target_model, Model) assert self.__class__.__name__ == target_model.__class__.__name__, \ "must be the same class for params syncing!" assert (decay >= 0 and decay <= 1) target_vars = dict(target_model.named_parameters()) for name, var in self.named_parameters(): target_vars[name].data.copy_(decay * target_vars[name].data + (1 - decay) * var.data) def get_weights(self): """Returns a Python list containing parameters of current model. Returns: a Python list containing the parameters of current model. """ return list(self.parameters()) def set_weights(self, weights): """Copy parameters from ``set_weights()`` to the model. Args: weights (list): a Python list containing the parameters. """ assert len(weights) == len(list(self.parameters())), \ 'size of input weights should be same as weights number of current model' for var, weight in zip(self.parameters(), weights): var.data.copy_(weight.data)