# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import random import numpy as np from rlschool import ElevatorState, ElevatorAction from rlschool import MansionAttribute, MansionState from rlschool import EPSILON, HUGE from rlschool import MansionConfig from rlschool import MansionManager def discretize(value, n_dim, min_val, max_val): """ discretize a value into a vector of n_dim dimension 1-hot representation with the value below min_val being [1, 0, 0, ..., 0] and the value above max_val being [0, 0, ..., 0, 1] Args: value: the value that needs to be discretized into 1-hot format n_dim: number of dimensions min_val: minimal value in the result man_val: maximum value in the result Returns: the discretized vector """ assert n_dim > 0 if (n_dim == 1): return [1] delta = (max_val - min_val) / float(n_dim - 1) active_pos = int((value - min_val) / delta + 0.5) active_pos = min(n_dim - 1, active_pos) active_pos = max(0, active_pos) ret_array = [0 for i in range(n_dim)] ret_array[active_pos] = 1.0 return ret_array def linear_discretize(value, n_dim, min_val, max_val): """ discretize a value into a vector of n_dim dimensional representation with the value below min_val being [1, 0, 0, ..., 0] and the value above max_val being [0, 0, ..., 0, 1] e.g. if n_dim = 2, min_val = 1.0, max_val = 2.0 if value = 1.5 returns [0.5, 0.5], if value = 1.8 returns [0.2, 0.8] Args: value: the value that needs to be discretized n_dim: number of dimensions min_val: minimal value in the result man_val: maximum value in the result Returns: the discretized vector """ assert n_dim > 0 if (n_dim == 1): return [1] delta = (max_val - min_val) / float(n_dim - 1) active_pos = int((value - min_val) / delta + 0.5) active_pos = min(n_dim - 2, active_pos) active_pos = max(0, active_pos) anchor_pt = active_pos * delta + min_val if (anchor_pt > value and anchor_pt > min_val + 0.5 * delta): anchor_pt -= delta active_pos -= 1 weight = (value - anchor_pt) / delta weight = min(1.0, max(0.0, weight)) ret_array = [0 for i in range(n_dim)] ret_array[active_pos] = 1.0 - weight ret_array[active_pos + 1] = weight return ret_array def ele_state_preprocessing(ele_state): """Process elevator state, make it usable for network Args: ele_state: ElevatorState, nametuple, defined in rlschool/liftsim/environment/mansion/utils.py Returns: ele_feature: list of elevator state """ ele_feature = [] # add floor information ele_feature.extend( linear_discretize(ele_state.Floor, ele_state.MaximumFloor, 1.0, ele_state.MaximumFloor)) # add velocity information ele_feature.extend( linear_discretize(ele_state.Velocity, 21, -ele_state.MaximumSpeed, ele_state.MaximumSpeed)) # add door information ele_feature.append(ele_state.DoorState) ele_feature.append(float(ele_state.DoorIsOpening)) ele_feature.append(float(ele_state.DoorIsClosing)) # add direction information ele_feature.extend(discretize(ele_state.Direction, 3, -1, 1)) # add load weight information ele_feature.extend( linear_discretize(ele_state.LoadWeight / ele_state.MaximumLoad, 5, 0.0, 1.0)) # add other information target_floor_binaries = [0.0 for i in range(ele_state.MaximumFloor)] for target_floor in ele_state.ReservedTargetFloors: target_floor_binaries[target_floor - 1] = 1.0 ele_feature.extend(target_floor_binaries) dispatch_floor_binaries = [0.0 for i in range(ele_state.MaximumFloor + 1)] dispatch_floor_binaries[ele_state.CurrentDispatchTarget] = 1.0 ele_feature.extend(dispatch_floor_binaries) ele_feature.append(ele_state.DispatchTargetDirection) return ele_feature def obs_dim(mansion_attr): """Calculate the observation dimension Args: mansion_attr: MansionAttribute, attribute of mansion_manager Returns: observation dimension """ assert isinstance(mansion_attr, MansionAttribute) ele_dim = mansion_attr.NumberOfFloor * 3 + 34 obs_dim = (ele_dim + 1) * mansion_attr.ElevatorNumber + \ mansion_attr.NumberOfFloor * 2 return obs_dim def act_dim(mansion_attr): """Calculate the action dimension, which is number of floor times 2 plus 2. The additional two are for special cases: the elevator stops at once if the new dispatch_target is 0, the original dispatch_target does not change if dispatch_target is -1. See implementation in method action_idx_to_action below. Args: mansion_attr: MansionAttribute, attribute of mansion_manager Returns: action dimension """ assert isinstance(mansion_attr, MansionAttribute) return mansion_attr.NumberOfFloor * 2 + 2 def mansion_state_preprocessing(mansion_state): """Process mansion_state to make it usable for networks, convert it into a numpy array Args: mansion_state: namedtuple of mansion state, defined in rlschool/liftsim/environment/mansion/utils.py Returns: the converted numpy array """ ele_features = list() for ele_state in mansion_state.ElevatorStates: ele_features.append(ele_state_preprocessing(ele_state)) max_floor = ele_state.MaximumFloor target_floor_binaries_up = [0.0 for i in range(max_floor)] target_floor_binaries_down = [0.0 for i in range(max_floor)] for floor in mansion_state.RequiringUpwardFloors: target_floor_binaries_up[floor - 1] = 1.0 for floor in mansion_state.RequiringDownwardFloors: target_floor_binaries_down[floor - 1] = 1.0 target_floor_binaries = target_floor_binaries_up + target_floor_binaries_down idx = 0 man_features = list() for idx in range(len(mansion_state.ElevatorStates)): elevator_id_vec = discretize(idx + 1, len(mansion_state.ElevatorStates), 1, len(mansion_state.ElevatorStates)) idx_array = list(range(len(mansion_state.ElevatorStates))) idx_array.remove(idx) # random.shuffle(idx_array) man_features.append(ele_features[idx]) for left_idx in idx_array: man_features[idx] = man_features[idx] + ele_features[left_idx] man_features[idx] = man_features[idx] + \ elevator_id_vec + target_floor_binaries return np.asarray(man_features, dtype='float32') def action_idx_to_action(action_idx, act_dim): """Convert action_inx to action Args: action_idx: the index needed to be converted act_dim: action dimension Returns: the converted namedtuple """ assert isinstance(action_idx, int) assert isinstance(act_dim, int) realdim = act_dim - 2 if (action_idx == realdim): return ElevatorAction(0, 1) elif (action_idx == realdim + 1): return ElevatorAction(-1, 1) action = action_idx if (action_idx < realdim / 2): direction = 1 action += 1 else: direction = -1 action -= int(realdim / 2) action += 1 return [action, direction] def action_to_action_idx(action, act_dim): """Convert action to number according to act_dim. Args: action: namedtuple defined in rlschool/liftsim/environment/mansion/utils.py act_dim: action dimension Returns: action_idx: the result index """ assert isinstance(action, ElevatorAction) assert isinstance(act_dim, int) realdim = act_dim - 2 if (action.TargetFloor == 0): return realdim elif (action.TargetFloor < 0): return realdim + 1 action_idx = 0 if (action.DirectionIndicator < 0): action_idx += int(realdim / 2) action_idx += action.TargetFloor - 1 return action_idx