# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import parl import numpy as np import numpy.random as random from copy import deepcopy from collections import deque from rlschool import EPSILON, HUGE from rl_benchmark.model import RLDispatcherModel from rl_benchmark.agent import ElevatorAgent from parl.algorithms import DQN from parl.utils import ReplayMemory MEMORY_SIZE = 1000000 BATCH_SIZE = 64 class RL_dispatcher(): """ An RL benchmark for elevator system """ def __init__(self, env, max_episode): self.env = env self._obs_dim = env.observation_space self._act_dim = env.action_space self._global_step = 0 self.max_episode = max_episode self._rpm = ReplayMemory(MEMORY_SIZE, self._obs_dim, 1) self._model = RLDispatcherModel(self._act_dim) hyperparas = { 'action_dim': self._act_dim, 'lr': 5.0e-4, 'gamma': 0.998 } self._algorithm = DQN(self._model, hyperparas) self._agent = ElevatorAgent(self._algorithm, self._obs_dim, self._act_dim) self._warm_up_size = 2000 self._statistic_freq = 1000 self._loss_queue = deque() def run_episode(self): self.env.reset() acc_reward = 0.0 while self._global_step < self.max_episode: # self.env.render() state = self.env.state action = self._agent.sample(state) state_, reward, done, info = self.env.step(action) output_info = self.learn_step(state, action, reward) acc_reward += reward if (isinstance(output_info, dict) and len(output_info) > 0): self.env.log_notice("%s", output_info) if (self._global_step % 3600 == 0): self.env.log_notice( "Accumulated Reward: %f, Mansion Status: %s", acc_reward, self.env.statistics) acc_reward = 0.0 self._agent.save('./model.ckpt') def learn_step(self, state, action, r): self._global_step += 1 if (self._global_step > self._warm_up_size): for i in range(self.env.elevator_num): self._rpm.append(self._last_observation_array[i], self._last_action[i], self._last_reward, deepcopy(state[i]), False) self._last_observation_array = deepcopy(state) self._last_action = deepcopy(action) self._last_reward = r ret_dict = {} if self._rpm.size() > self._warm_up_size: batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal = \ self._rpm.sample_batch(BATCH_SIZE) cost = self._agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal) self._loss_queue.appendleft(cost) if (len(self._loss_queue) > self._statistic_freq): self._loss_queue.pop() if (self._global_step % self._statistic_freq == 0): ret_dict["Temporal Difference Error(Average)"] = \ float(sum(self._loss_queue)) / float(len(self._loss_queue)) return ret_dict