# LiftSim基线 ## 简介 基于PARL库实现Deep Q-network算法,应用于[RLSchool][rlschool]库中的电梯调度模拟环境[LiftSim][liftsim]。 ## 依赖库 + [paddlepaddle==1.5.1](https://github.com/PaddlePaddle/Paddle) + [parl==1.1.2](https://github.com/PaddlePaddle/PARL) + [rlschool>=0.0.1](rlschool) ## 运行 ```python python demo.py ``` ## Benchmark Accumulated Reward:每3600 steps内reward的总和,可体现电梯调度在单位时间(模拟环境0.5小时)内的效率。 [rlschool]: https://github.com/PaddlePaddle/RLSchool [liftsim]: https://github.com/PaddlePaddle/RLSchool/tree/master/rlschool/liftsim