# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gym import numpy as np from mujoco_agent import MujocoAgent from mujoco_model import MujocoModel from parl.algorithms import PPO from parl.utils import logger, action_mapping from parl.utils.rl_utils import calc_gae, calc_discount_sum_rewards from scaler import Scaler def run_train_episode(env, agent, scaler): obs = env.reset() observes, actions, rewards, unscaled_obs = [], [], [], [] step = 0.0 scale, offset = scaler.get() scale[-1] = 1.0 # don't scale time step feature offset[-1] = 0.0 # don't offset time step feature while True: obs = obs.reshape((1, -1)) obs = np.append(obs, [[step]], axis=1) # add time step feature unscaled_obs.append(obs) obs = (obs - offset) * scale # center and scale observations obs = obs.astype('float32') observes.append(obs) action = agent.policy_sample(obs) action = np.clip(action, -1.0, 1.0) action = action_mapping(action, env.action_space.low[0], env.action_space.high[0]) action = action.reshape((1, -1)).astype('float32') actions.append(action) obs, reward, done, _ = env.step(np.squeeze(action)) rewards.append(reward) step += 1e-3 # increment time step feature if done: break return (np.concatenate(observes), np.concatenate(actions), np.array(rewards, dtype='float32'), np.concatenate(unscaled_obs)) def run_evaluate_episode(env, agent, scaler): obs = env.reset() rewards = [] step = 0.0 scale, offset = scaler.get() scale[-1] = 1.0 # don't scale time step feature offset[-1] = 0.0 # don't offset time step feature while True: obs = obs.reshape((1, -1)) obs = np.append(obs, [[step]], axis=1) # add time step feature obs = (obs - offset) * scale # center and scale observations obs = obs.astype('float32') action = agent.policy_predict(obs) action = action_mapping(action, env.action_space.low[0], env.action_space.high[0]) obs, reward, done, _ = env.step(np.squeeze(action)) rewards.append(reward) step += 1e-3 # increment time step feature if done: break return np.sum(rewards) def collect_trajectories(env, agent, scaler, episodes): trajectories, all_unscaled_obs = [], [] for e in range(episodes): obs, actions, rewards, unscaled_obs = run_train_episode( env, agent, scaler) trajectories.append({ 'obs': obs, 'actions': actions, 'rewards': rewards, }) all_unscaled_obs.append(unscaled_obs) # update running statistics for scaling observations scaler.update(np.concatenate(all_unscaled_obs)) return trajectories def build_train_data(trajectories, agent): train_obs, train_actions, train_advantages, train_discount_sum_rewards = [], [], [], [] for trajectory in trajectories: pred_values = agent.value_predict(trajectory['obs']) # scale rewards scale_rewards = trajectory['rewards'] * (1 - args.gamma) discount_sum_rewards = calc_discount_sum_rewards( scale_rewards, args.gamma).astype('float32') advantages = calc_gae(scale_rewards, pred_values, 0, args.gamma, args.lam) # normalize advantages advantages = (advantages - advantages.mean()) / ( advantages.std() + 1e-6) advantages = advantages.astype('float32') train_obs.append(trajectory['obs']) train_actions.append(trajectory['actions']) train_advantages.append(advantages) train_discount_sum_rewards.append(discount_sum_rewards) train_obs = np.concatenate(train_obs) train_actions = np.concatenate(train_actions) train_advantages = np.concatenate(train_advantages) train_discount_sum_rewards = np.concatenate(train_discount_sum_rewards) return train_obs, train_actions, train_advantages, train_discount_sum_rewards def main(): env = gym.make(args.env) obs_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] obs_dim += 1 # add 1 to obs dim for time step feature scaler = Scaler(obs_dim) model = MujocoModel(obs_dim, act_dim) hyperparas = { 'act_dim': act_dim, 'policy_lr': model.policy_lr, 'value_lr': model.value_lr } alg = PPO(model, hyperparas) agent = MujocoAgent( alg, obs_dim, act_dim, args.kl_targ, loss_type=args.loss_type) # run a few episodes to initialize scaler collect_trajectories(env, agent, scaler, episodes=5) test_flag = 0 total_steps = 0 while total_steps < args.train_total_steps: trajectories = collect_trajectories( env, agent, scaler, episodes=args.episodes_per_batch) total_steps += sum([t['obs'].shape[0] for t in trajectories]) total_train_rewards = sum([np.sum(t['rewards']) for t in trajectories]) train_obs, train_actions, train_advantages, train_discount_sum_rewards = build_train_data( trajectories, agent) policy_loss, kl = agent.policy_learn(train_obs, train_actions, train_advantages) value_loss = agent.value_learn(train_obs, train_discount_sum_rewards) logger.info( 'Steps {}, Train reward: {}, Policy loss: {}, KL: {}, Value loss: {}' .format(total_steps, total_train_rewards / args.episodes_per_batch, policy_loss, kl, value_loss)) if total_steps // args.test_every_steps >= test_flag: while total_steps // args.test_every_steps >= test_flag: test_flag += 1 eval_reward = run_evaluate_episode(env, agent, scaler) logger.info('Steps {}, Evaluate reward: {}'.format( total_steps, eval_reward)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--env', type=str, help='Mujoco environment name', default='HalfCheetah-v2') parser.add_argument( '--gamma', type=float, help='Discount factor', default=0.995) parser.add_argument( '--lam', type=float, help='Lambda for Generalized Advantage Estimation', default=0.98) parser.add_argument( '--kl_targ', type=float, help='D_KL target value', default=0.003) parser.add_argument( '--episodes_per_batch', type=int, help='Number of episodes per training batch', default=5) parser.add_argument( '--loss_type', type=str, help="Choose loss type of PPO algorithm, 'CLIP' or 'KLPEN'", default='CLIP') parser.add_argument( '--train_total_steps', type=int, default=int(1e7), help='maximum training steps') parser.add_argument( '--test_every_steps', type=int, default=int(1e4), help='the step interval between two consecutive evaluations') args = parser.parse_args() main()