# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle.fluid as fluid import parl.layers as layers from parl.framework.agent_base import Agent class AtariAgent(Agent): def __init__(self, algorithm, config, learn_data_provider=None): self.config = config super(AtariAgent, self).__init__(algorithm) use_cuda = True if self.gpu_id >= 0 else False exec_strategy = fluid.ExecutionStrategy() exec_strategy.use_experimental_executor = True exec_strategy.num_threads = 4 build_strategy = fluid.BuildStrategy() build_strategy.remove_unnecessary_lock = True # Use ParallelExecutor to make learn program run faster self.learn_exe = fluid.ParallelExecutor( use_cuda=use_cuda, main_program=self.learn_program, build_strategy=build_strategy, exec_strategy=exec_strategy) self.sample_exes = [] for _ in range(config['predict_thread_num']): with fluid.scope_guard(fluid.global_scope().new_scope()): pe = fluid.ParallelExecutor( use_cuda=use_cuda, main_program=self.sample_program, build_strategy=build_strategy, exec_strategy=exec_strategy) self.sample_exes.append(pe) if learn_data_provider: self.learn_reader.decorate_tensor_provider(learn_data_provider) self.learn_reader.start() def build_program(self): self.sample_program = fluid.Program() self.predict_program = fluid.Program() self.learn_program = fluid.Program() with fluid.program_guard(self.sample_program): obs = layers.data( name='obs', shape=self.config['obs_shape'], dtype='float32') sample_actions, values = self.alg.sample(obs) self.sample_outputs = [sample_actions.name, values.name] with fluid.program_guard(self.predict_program): obs = layers.data( name='obs', shape=self.config['obs_shape'], dtype='float32') self.predict_actions = self.alg.predict(obs) with fluid.program_guard(self.learn_program): obs = layers.data( name='obs', shape=self.config['obs_shape'], dtype='float32') actions = layers.data(name='actions', shape=[], dtype='int64') advantages = layers.data( name='advantages', shape=[], dtype='float32') target_values = layers.data( name='target_values', shape=[], dtype='float32') lr = layers.data( name='lr', shape=[1], dtype='float32', append_batch_size=False) entropy_coeff = layers.data( name='entropy_coeff', shape=[], dtype='float32') self.learn_reader = fluid.layers.create_py_reader_by_data( capacity=32, feed_list=[ obs, actions, advantages, target_values, lr, entropy_coeff ]) obs, actions, advantages, target_values, lr, entropy_coeff = fluid.layers.read_file( self.learn_reader) total_loss, pi_loss, vf_loss, entropy = self.alg.learn( obs, actions, advantages, target_values, lr, entropy_coeff) self.learn_outputs = [ total_loss.name, pi_loss.name, vf_loss.name, entropy.name ] def sample(self, obs_np, thread_id): """ Args: obs_np: a numpy float32 array of shape ([B] + observation_space) Format of image input should be NCHW format. Returns: sample_ids: a numpy int64 array of shape [B] values: a numpy float32 array of shape [B] """ obs_np = obs_np.astype('float32') sample_actions, values = self.sample_exes[thread_id].run( feed={'obs': obs_np}, fetch_list=self.sample_outputs) return sample_actions, values def predict(self, obs_np): """ Args: obs_np: a numpy float32 array of shape ([B] + observation_space) Format of image input should be NCHW format. Returns: sample_ids: a numpy int64 array of shape [B] """ obs_np = obs_np.astype('float32') predict_actions = self.fluid_executor.run( self.predict_program, feed={'obs': obs_np}, fetch_list=[self.predict_actions])[0] return predict_actions def learn(self): total_loss, pi_loss, vf_loss, entropy = self.learn_exe.run( fetch_list=self.learn_outputs) return total_loss, pi_loss, vf_loss, entropy