// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "gaussian_sampling.h" namespace DeepES{ bool GaussianSampling::load_config(const DeepESConfig& config) { bool success = true; _std = config.gaussian_sampling().std(); success = set_seed(config.seed()); return success; } bool GaussianSampling::sampling(int* key, float* noise, int64_t size) { bool success = true; if (noise == nullptr) { LOG(ERROR) << "[DeepES] Input noise array cannot be nullptr."; success = false; return success; } int rand_key = rand(); *key = rand_key; std::default_random_engine generator(rand_key); std::normal_distribution norm; for (int64_t i = 0; i < size; ++i) { *(noise + i) = norm(generator) * _std; } return success; } bool GaussianSampling::resampling(int key, float* noise, int64_t size) { bool success = true; if (noise == nullptr) { LOG(ERROR) << "[DeepES] Input noise array cannot be nullptr."; success = false; } else { std::default_random_engine generator(key); std::normal_distribution norm; for (int64_t i = 0; i < size; ++i) { *(noise + i) = norm(generator) * _std; } } return success; } }