// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "adam_optimizer.h" namespace DeepES { AdamOptimizer::~AdamOptimizer() { for (auto iter = _momentum.begin(); iter != _momentum.end(); iter++) { delete[] iter->second; } for (auto iter = _velocity.begin(); iter != _velocity.end(); iter++) { delete[] iter->second; } _momentum.clear(); _velocity.clear(); } void AdamOptimizer::compute_step(float* gradient, int size, std::string param_name="") { if (_momentum.count(param_name) == 0) { _momentum[param_name] = new float [size]; memset(_momentum[param_name], 0, size * sizeof(float)); } if (_velocity.count(param_name) == 0) { _velocity[param_name] = new float [size]; memset(_velocity[param_name], 0, size * sizeof(float)); } int true_update_times = int(_update_times / _velocity.size()); float alpha = std::sqrt(1 - std::pow(_beta2, _update_times)) / (1 - std::pow(_beta1, _update_times)); for (int i = 0; i < size; ++i) { _momentum[param_name][i] = _beta1 * _momentum[param_name][i] + (1 - _beta1) * gradient[i]; _velocity[param_name][i] = _beta2 * _velocity[param_name][i] + (1 - _beta2) * gradient[i] * gradient[i]; gradient[i] = alpha * _momentum[param_name][i] / (std::sqrt(_velocity[param_name][i]) + _epsilon); } } }//namespace