// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ADAM_OPTIMIZER_H #define ADAM_OPTIMIZER_H #include #include #include "optimizer.h" namespace DeepES{ /*@brief AdamOptimizer. * Implements Adam algorithm. * *@Args: * base_lr: learning rate (default: 1e-3). * beta1: coefficients used for computing running averages of gradient (default: 0.9). * beta2: coefficients used for computing running averages of gradient's square (default: 0.999). * epsilon: term added to the denominator to improve numerical stability (default: 1e-8). */ class AdamOptimizer: public Optimizer { public: AdamOptimizer(float base_lr, float beta1=0.9, float beta2=0.999, float epsilon=1e-8):Optimizer(base_lr), \ _beta1(beta1), _beta2(beta2), _epsilon(epsilon) {} ~AdamOptimizer(); protected: void compute_step(float* gradient, int size, std::string param_name); private: float _beta1; float _beta2; float _epsilon; std::map _momentum; std::map _velocity; }; }//namespace #endif