# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.simplefilter('default') import copy import numpy as np import paddle.fluid as fluid from parl.core.fluid.algorithm import Algorithm from parl.core.fluid import layers __all__ = ['DDQN'] class DDQN(Algorithm): def __init__(self, model, act_dim=None, gamma=None, lr=None): """ Double DQN algorithm Args: model (parl.Model): model defining forward network of Q function act_dim (int): dimension of the action space gamma (float): discounted factor for reward computation. lr (float): learning rate. """ self.model = model self.target_model = copy.deepcopy(model) assert isinstance(act_dim, int) assert isinstance(gamma, float) self.act_dim = act_dim self.gamma = gamma self.lr = lr def predict(self, obs): """ use value model self.model to predict the action value """ return self.model.value(obs) def learn(self, obs, action, reward, next_obs, terminal, learning_rate=None): """ update value model self.model with DQN algorithm """ # Support the modification of learning_rate if learning_rate is None: assert isinstance( self.lr, float), "Please set the learning rate of DQN in initializaion." learning_rate = self.lr pred_value = self.model.value(obs) action_onehot = layers.one_hot(action, self.act_dim) action_onehot = layers.cast(action_onehot, dtype='float32') pred_action_value = layers.reduce_sum( layers.elementwise_mul(action_onehot, pred_value), dim=1) # choose acc. to behavior network next_action_value = self.model.value(next_obs) greedy_action = layers.argmax(next_action_value, axis=-1) # calculate the target q value with target network batch_size = layers.cast(layers.shape(greedy_action)[0], dtype='int32') range_tmp = layers.range( start=0, end=batch_size, step=1, dtype='int64') * self.act_dim a_indices = range_tmp + greedy_action a_indices = layers.cast(a_indices, dtype='int32') next_pred_value = self.target_model.value(next_obs) next_pred_value = layers.reshape( next_pred_value, shape=[ -1, ]) max_v = layers.gather(next_pred_value, a_indices) max_v = layers.reshape( max_v, shape=[ -1, ]) max_v.stop_gradient = True target = reward + ( 1.0 - layers.cast(terminal, dtype='float32')) * self.gamma * max_v cost = layers.square_error_cost(pred_action_value, target) cost = layers.reduce_mean(cost) optimizer = fluid.optimizer.Adam( learning_rate=learning_rate, epsilon=1e-3) optimizer.minimize(cost) return cost def sync_target(self): """ sync weights of self.model to self.target_model """ self.model.sync_weights_to(self.target_model)