From f12b790f7552e1e8ed4e6ba306286467e613814b Mon Sep 17 00:00:00 2001 From: Bo Zhou Date: Fri, 19 Apr 2019 11:09:53 +0800 Subject: [PATCH] Update README.md (#68) * Update README.md * Update Dockerfile * Update build.sh --- .teamcity/Dockerfile | 2 +- .teamcity/build.sh | 2 ++ README.md | 2 +- 3 files changed, 4 insertions(+), 2 deletions(-) diff --git a/.teamcity/Dockerfile b/.teamcity/Dockerfile index 85d8a2f..e5422e8 100644 --- a/.teamcity/Dockerfile +++ b/.teamcity/Dockerfile @@ -15,7 +15,7 @@ # A dev image based on paddle production image -FROM parl/parl-test:cuda9.0-cudnn7 +FROM parl/parl-test:1.1-cuda9.0-cudnn7 COPY ./requirements.txt /root/ diff --git a/.teamcity/build.sh b/.teamcity/build.sh index 34092a6..9b8b7a3 100755 --- a/.teamcity/build.sh +++ b/.teamcity/build.sh @@ -56,6 +56,8 @@ function check_style() { } function run_test_with_gpu() { + export FLAGS_fraction_of_gpu_memory_to_use=0.5 + mkdir -p ${REPO_ROOT}/build cd ${REPO_ROOT}/build cmake .. diff --git a/README.md b/README.md index 4e7a956..971f918 100644 --- a/README.md +++ b/README.md @@ -69,7 +69,7 @@ agent = AtariAgent(algorithm) # Parallelization PARL provides a compact API for distributed training, allowing users to transfer the code into a parallelized version by simply adding a decorator. -Here is a `Hello World` example to demonstrate how easily it is to leverage outer computation resources. +Here is a `Hello World` example to demonstrate how easy it is to leverage outer computation resources. ```python #============Agent.py================= @parl.remote_class -- GitLab