未验证 提交 b7e32749 编写于 作者: B Bo Zhou 提交者: GitHub

Add some papers (#92)

* Update model-based.md
上级 c046601c
...@@ -26,3 +26,23 @@ ...@@ -26,3 +26,23 @@
7. **Model-Ensemble Trust-Region Policy Optimization** ICLR2018. [paper](https://arxiv.org/abs/1802.10592) 7. **Model-Ensemble Trust-Region Policy Optimization** ICLR2018. [paper](https://arxiv.org/abs/1802.10592)
*Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, Pieter Abbeel* *Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, Pieter Abbeel*
8. **Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models** NIPS2018. [paper](https://arxiv.org/abs/1805.12114)
*Kurtland Chua, Roberto Calandra, Rowan McAllister, Sergey Levine*
9. **Dyna, an integrated architecture for learning, planning, and reacting** ACM1991. [paper](https://dl.acm.org/citation.cfm?id=122377)
*Sutton, Richard S*
10. **Learning Continuous Control Policies by Stochastic Value Gradients** NIPS 2015. [paper](https://arxiv.org/abs/1510.09142)
*Nicolas Heess, Greg Wayne, David Silver, Timothy Lillicrap, Yuval Tassa, Tom Erez*
11. **Imagination-Augmented Agents for Deep Reinforcement Learning** NIPS 2017. [paper](https://arxiv.org/abs/1707.06203)
*Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, Daan Wierstra*
12. **Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks** ICLR 2017. [paper](https://arxiv.org/abs/1605.07127)
*Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft*
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册