提交 60d51667 编写于 作者: L likejiao

update readme

上级 cfd22421
......@@ -3,15 +3,16 @@
This is an PARL + PyTorch implementation of the multi-agent reinforcement learning algorithms: COMA.
### Paper
- [Counterfactual Multi-Agent Policy Gradients](https://arxiv.org/abs/1705.08926)
### Benchmark Result
Mean win_rate (evaluate 5 episode) for 1000 epchos training (1 epcho = 5 episodes).
<img src=".benchmark/3m_result.png" width = "400" height = "300" alt="coma-3m"/>
## StarCraft II Installation
The environment is based on the full game of StarCraft II (version >= 3.16.1). To install the game, follow the commands bellow, or check more detail in [SMAC](https://github.com/oxwhirl/smac#installing-starcraft-ii)
......@@ -27,9 +28,10 @@ $ bash build_docker.sh # build the Dockerfile
$ bash install_sc2.sh # download startcraft II and maps
```
## How to use
### Dependencies
- python3.5+
- parl
- torch
......@@ -46,3 +48,9 @@ $ cd coma
$ NV_GPU=$your_gpu_id docker run --name $your_container_name --user $(id -u):$(id -g) -v `pwd`:/parl -t parl-starcraft2:1.0 python3 train.py
```
*or you can operate docker interactively by `docker run --name $your_container_name -it -v $your_host_path:/parl -t parl-starcraft2:1.0 /bin/bash`*
### Reference
- [StarCraft](https://github.com/starry-sky6688/StarCraft)
- [pymarl](https://github.com/oxwhirl/pymarl)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册