-
由 Hongsheng Zeng 提交于
* add IMPALA algorithm and some common utils * update README.md * refactor files structure of impala algorithm; seperate numpy utils from utils * add hyper parameter scheduler module; add entropy and lr scheduler in impala * clip reward in atari wrapper instead of learner side; fix codestyle * add benchmark result of impala; refine code of impala example; add obs_format in atari_wrappers * Update README.md * add a3c algorithm, A2C example and rl_utils * require training in single gpu/cpu * only check cpu/gpu num in learner * refine Readme * update impala benchmark picture; update Readme * add benchmark result of A2C * move get_params/set_params in agent_base * add GA3C example * Update README.md * Update README.md * Update README.md * Update README.md * refine Readme * add benchmark * add default safe eps in numpy logp calculation * refine document; make unittest stable
3c511e8f