maddpg.py 6.1 KB
Newer Older
R
rical730 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
warnings.simplefilter('default')

from parl.core.fluid import layers
from copy import deepcopy
from paddle import fluid
from parl.core.fluid.algorithm import Algorithm

__all__ = ['MADDPG']

from parl.core.fluid.policy_distribution import SoftCategoricalDistribution
from parl.core.fluid.policy_distribution import SoftMultiCategoricalDistribution


def SoftPDistribution(logits, act_space):
30 31 32 33 34 35 36 37
    """input:
            logits: the output of policy model
            act_space: action space, must be gym.spaces.Discrete or multiagent.multi_discrete.MultiDiscrete
        output:
            instance of SoftCategoricalDistribution or SoftMultiCategoricalDistribution
    """
    # is instance of gym.spaces.Discrete
    if (hasattr(act_space, 'n')):
R
rical730 已提交
38 39 40 41 42 43
        return SoftCategoricalDistribution(logits)
    # is instance of multiagent.multi_discrete.MultiDiscrete
    elif (hasattr(act_space, 'num_discrete_space')):
        return SoftMultiCategoricalDistribution(logits, act_space.low,
                                                act_space.high)
    else:
44 45
        raise AssertionError("act_space must be instance of \
            gym.spaces.Discrete or multiagent.multi_discrete.MultiDiscrete")
R
rical730 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166


class MADDPG(Algorithm):
    def __init__(self,
                 model,
                 agent_index=None,
                 act_space=None,
                 gamma=None,
                 tau=None,
                 lr=None):
        """  MADDPG algorithm
        
        Args:
            model (parl.Model): forward network of actor and critic.
                                The function get_actor_params() of model should be implemented.
            agent_index: index of agent, in multiagent env
            act_space: action_space, gym space
            gamma (float): discounted factor for reward computation.
            tau (float): decay coefficient when updating the weights of self.target_model with self.model
            lr (float): learning rate 
        """

        assert isinstance(agent_index, int)
        assert isinstance(act_space, list)
        assert isinstance(gamma, float)
        assert isinstance(tau, float)
        assert isinstance(lr, float)
        self.agent_index = agent_index
        self.act_space = act_space
        self.gamma = gamma
        self.tau = tau
        self.lr = lr

        self.model = model
        self.target_model = deepcopy(model)

    def predict(self, obs):
        """ input:  
                obs: observation, shape([B] + shape of obs_n[agent_index])
            output: 
                act: action, shape([B] + shape of act_n[agent_index])
        """
        this_policy = self.model.policy(obs)
        this_action = SoftPDistribution(
            logits=this_policy,
            act_space=self.act_space[self.agent_index]).sample()
        return this_action

    def predict_next(self, obs):
        """ input:  observation, shape([B] + shape of obs_n[agent_index])
            output: action, shape([B] + shape of act_n[agent_index])
        """
        next_policy = self.target_model.policy(obs)
        next_action = SoftPDistribution(
            logits=next_policy,
            act_space=self.act_space[self.agent_index]).sample()
        return next_action

    def Q(self, obs_n, act_n):
        """ input:  
                obs_n: all agents' observation, shape([B] + shape of obs_n)
            output: 
                act_n: all agents' action, shape([B] + shape of act_n)
        """
        return self.model.value(obs_n, act_n)

    def Q_next(self, obs_n, act_n):
        """ input:  
                obs_n: all agents' observation, shape([B] + shape of obs_n)
            output: 
                act_n: all agents' action, shape([B] + shape of act_n)
        """
        return self.target_model.value(obs_n, act_n)

    def learn(self, obs_n, act_n, target_q):
        """ update actor and critic model with MADDPG algorithm
        """
        actor_cost = self._actor_learn(obs_n, act_n)
        critic_cost = self._critic_learn(obs_n, act_n, target_q)
        return critic_cost

    def _actor_learn(self, obs_n, act_n):
        i = self.agent_index
        this_policy = self.model.policy(obs_n[i])
        sample_this_action = SoftPDistribution(
            logits=this_policy,
            act_space=self.act_space[self.agent_index]).sample()

        action_input_n = act_n + []
        action_input_n[i] = sample_this_action
        eval_q = self.Q(obs_n, action_input_n)
        act_cost = layers.reduce_mean(-1.0 * eval_q)

        act_reg = layers.reduce_mean(layers.square(this_policy))

        cost = act_cost + act_reg * 1e-3

        fluid.clip.set_gradient_clip(
            clip=fluid.clip.GradientClipByNorm(clip_norm=0.5),
            param_list=self.model.get_actor_params())

        optimizer = fluid.optimizer.AdamOptimizer(self.lr)
        optimizer.minimize(cost, parameter_list=self.model.get_actor_params())
        return cost

    def _critic_learn(self, obs_n, act_n, target_q):
        pred_q = self.Q(obs_n, act_n)
        cost = layers.reduce_mean(layers.square_error_cost(pred_q, target_q))

        fluid.clip.set_gradient_clip(
            clip=fluid.clip.GradientClipByNorm(clip_norm=0.5),
            param_list=self.model.get_critic_params())

        optimizer = fluid.optimizer.AdamOptimizer(self.lr)
        optimizer.minimize(cost, parameter_list=self.model.get_critic_params())
        return cost

    def sync_target(self, decay=None):
        if decay is None:
            decay = 1.0 - self.tau
        self.model.sync_weights_to(self.target_model, decay=decay)