atari_agent.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.fluid as fluid
import parl.layers as layers
from parl.framework.agent_base import Agent


class AtariAgent(Agent):
    def __init__(self, algorithm, config, learn_data_provider=None):
        self.config = config
        super(AtariAgent, self).__init__(algorithm)

        use_cuda = True if self.gpu_id >= 0 else False

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = 4
        build_strategy = fluid.BuildStrategy()
        build_strategy.remove_unnecessary_lock = True

        # Use ParallelExecutor to make learn program running faster
        self.learn_exe = fluid.ParallelExecutor(
            use_cuda=use_cuda,
            main_program=self.learn_program,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

        if learn_data_provider:
            self.learn_reader.decorate_tensor_provider(learn_data_provider)
            self.learn_reader.start()

    def build_program(self):
        self.sample_program = fluid.Program()
        self.predict_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.sample_program):
            obs = layers.data(
                name='obs', shape=self.config['obs_shape'], dtype='float32')
            self.sample_actions, self.behaviour_logits = self.alg.sample(obs)

        with fluid.program_guard(self.predict_program):
            obs = layers.data(
                name='obs', shape=self.config['obs_shape'], dtype='float32')
            self.predict_actions = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):
            obs = layers.data(
                name='obs', shape=self.config['obs_shape'], dtype='float32')
            actions = layers.data(name='actions', shape=[], dtype='int64')
            behaviour_logits = layers.data(
                name='behaviour_logits',
                shape=[self.config['act_dim']],
                dtype='float32')
            rewards = layers.data(name='rewards', shape=[], dtype='float32')
            dones = layers.data(name='dones', shape=[], dtype='float32')
            lr = layers.data(
                name='lr', shape=[1], dtype='float32', append_batch_size=False)
            entropy_coeff = layers.data(
                name='entropy_coeff', shape=[], dtype='float32')

            self.learn_reader = fluid.layers.create_py_reader_by_data(
                capacity=self.config['train_batch_size'],
                feed_list=[
                    obs, actions, behaviour_logits, rewards, dones, lr,
                    entropy_coeff
                ])

            obs, actions, behaviour_logits, rewards, dones, lr, entropy_coeff = fluid.layers.read_file(
                self.learn_reader)

            vtrace_loss, kl = self.alg.learn(obs, actions, behaviour_logits,
                                             rewards, dones, lr, entropy_coeff)
            self.learn_outputs = [
                vtrace_loss.total_loss.name, vtrace_loss.pi_loss.name,
                vtrace_loss.vf_loss.name, vtrace_loss.entropy.name, kl.name
            ]

    def sample(self, obs_np):
        """
        Args:
            obs_np: a numpy float32 array of shape ([B] + observation_space).
            Format of image input should be NCHW format.

        Returns:
            sample_ids: a numpy int64 array of shape [B]
        """
        obs_np = obs_np.astype('float32')

        sample_actions, behaviour_logits = self.fluid_executor.run(
            self.sample_program,
            feed={'obs': obs_np},
            fetch_list=[self.sample_actions, self.behaviour_logits])
        return sample_actions, behaviour_logits

    def predict(self, obs_np):
        """
        Args:
            obs_np: a numpy float32 array of shape ([B] + observation_space)
            Format of image input should be NCHW format.

        Returns:
            sample_ids: a numpy int64 array of shape [B]
        """
        obs_np = obs_np.astype('float32')

        predict_actions = self.fluid_executor.run(
            self.predict_program,
            feed={'obs': obs_np},
            fetch_list=[self.predict_actions])[0]
        return predict_actions

    def learn(self):
        total_loss, pi_loss, vf_loss, entropy, kl = self.learn_exe.run(
            fetch_list=self.learn_outputs)
        return total_loss, pi_loss, vf_loss, entropy, kl

    def get_params(self):
        return self.alg.get_params()

    def set_params(self, params):
        self.alg.set_params(params, gpu_id=self.gpu_id)