# -*- coding: UTF-8 -*- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import sys import os import json import random import logging import numpy as np import six from io import open from collections import namedtuple import paddlepalm.tokenizer.ernie_tokenizer as tokenization from paddlepalm.reader.utils.batching4ernie import pad_batch_data from paddlepalm.reader.utils.mlm_batching import prepare_batch_data log = logging.getLogger(__name__) if six.PY3: import io sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') def csv_reader(fd, delimiter='\t'): def gen(): for i in fd: yield i.rstrip('\n').split(delimiter) return gen() class BaseReader(object): def __init__(self, vocab_path, label_map_config=None, max_seq_len=512, do_lower_case=False, in_tokens=False, is_inference=False, random_seed=None, tokenizer="FullTokenizer", is_classify=True, is_regression=False, for_cn=False, task_id=0): self.max_seq_len = max_seq_len self.tokenizer = tokenization.FullTokenizer( vocab_file=vocab_path, do_lower_case=do_lower_case) self.vocab = self.tokenizer.vocab self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.mask_id = self.vocab["[MASK]"] self.in_tokens = in_tokens self.is_inference = is_inference self.for_cn = for_cn self.task_id = task_id np.random.seed(random_seed) self.is_classify = is_classify self.is_regression = is_regression self.current_example = 0 self.current_epoch = 0 self.num_examples = 0 self.examples = {} if label_map_config: with open(label_map_config, encoding='utf8') as f: self.label_map = json.load(f) else: self.label_map = None def get_train_progress(self): """Gets progress for training phase.""" return self.current_example, self.current_epoch def _read_tsv(self, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, 'r', encoding='utf8') as f: reader = csv_reader(f) headers = next(reader) Example = namedtuple('Example', headers) examples = [] for line in reader: example = Example(*line) examples.append(example) return examples def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def _convert_example_to_record(self, example, max_seq_length, tokenizer): """Converts a single `Example` into a single `Record`.""" text_a = tokenization.convert_to_unicode(example.text_a) tokens_a = tokenizer.tokenize(text_a) tokens_b = None has_text_b = False if isinstance(example, dict): has_text_b = "text_b" in example.keys() else: has_text_b = "text_b" in example._fields if has_text_b: text_b = tokenization.convert_to_unicode(example.text_b) tokens_b = tokenizer.tokenize(text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT/ERNIE is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] text_type_ids = [] tokens.append("[CLS]") text_type_ids.append(0) for token in tokens_a: tokens.append(token) text_type_ids.append(0) tokens.append("[SEP]") text_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) text_type_ids.append(1) tokens.append("[SEP]") text_type_ids.append(1) token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) if self.is_inference: Record = namedtuple('Record', ['token_ids', 'text_type_ids', 'position_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids) else: if self.label_map: label_id = self.label_map[example.label] else: label_id = example.label Record = namedtuple('Record', [ 'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid' ]) qid = None if "qid" in example._fields: qid = example.qid record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids, label_id=label_id, qid=qid) return record def _prepare_batch_data(self, examples, batch_size, phase='train'): """generate batch records""" batch_records, max_len = [], 0 if len(examples) < batch_size: raise Exception('CLS dataset contains too few samples. Expect more than '+str(batch_size)) for index, example in enumerate(examples): if phase == "train": self.current_example = index record = self._convert_example_to_record(example, self.max_seq_len, self.tokenizer) max_len = max(max_len, len(record.token_ids)) if self.in_tokens: to_append = (len(batch_records) + 1) * max_len <= batch_size else: to_append = len(batch_records) < batch_size if to_append: batch_records.append(record) else: yield self._pad_batch_records(batch_records) batch_records, max_len = [record], len(record.token_ids) if phase == 'pred' and batch_records: yield self._pad_batch_records(batch_records) def get_num_examples(self, input_file=None, phase='train'): if input_file is None: return len(self.examples.get(phase, [])) else: # assert input_file is not None, "Argument input_file should be given or the data_generator should be created when this func is called." examples = self._read_tsv(input_file) return len(examples) def data_generator(self, input_file, batch_size, epoch, dev_count=1, shuffle=True, phase=None): examples = self._read_tsv(input_file) if phase is None: phase = 'all' self.examples[phase] = examples def wrapper(): all_dev_batches = [] if epoch is None: num_epochs = 99999999 else: num_epochs = epoch for epoch_index in range(num_epochs): if phase == "train": self.current_example = 0 self.current_epoch = epoch_index if shuffle: np.random.shuffle(examples) for batch_data in self._prepare_batch_data( examples, batch_size, phase=phase): if len(all_dev_batches) < dev_count: all_dev_batches.append(batch_data) if len(all_dev_batches) == dev_count: for batch in all_dev_batches: yield batch all_dev_batches = [] def f(): for i in wrapper(): yield i # def f(): # try: # for i in wrapper(): # yield i # except Exception as e: # import traceback # traceback.print_exc() return f class ClassifyReader(BaseReader): def _read_tsv(self, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, 'r', encoding='utf8') as f: reader = csv_reader(f) headers = next(reader) text_indices = [ index for index, h in enumerate(headers) if h != "label" ] Example = namedtuple('Example', headers) examples = [] for line in reader: for index, text in enumerate(line): if index in text_indices: if self.for_cn: line[index] = text.replace(' ', '') else: line[index] = text example = Example(*line) examples.append(example) return examples def _pad_batch_records(self, batch_records): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] if not self.is_inference: batch_labels = [record.label_id for record in batch_records] if self.is_classify: batch_labels = np.array(batch_labels).astype("int64").reshape( [-1]) elif self.is_regression: batch_labels = np.array(batch_labels).astype("float32").reshape( [-1]) if batch_records[0].qid: batch_qids = [record.qid for record in batch_records] batch_qids = np.array(batch_qids).astype("int64").reshape( [-1]) else: batch_qids = np.array([]).astype("int64").reshape([-1]) # padding padded_token_ids, input_mask = pad_batch_data( batch_token_ids, pad_idx=self.pad_id, return_input_mask=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, pad_idx=self.pad_id) padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_text_type_ids, padded_position_ids, padded_task_ids, input_mask ] if not self.is_inference: return_list += [batch_labels, batch_qids] return return_list class MaskLMReader(BaseReader): def _convert_example_to_record(self, example, max_seq_length, tokenizer): """Converts a single `Example` into a single `Record`.""" text_a = tokenization.convert_to_unicode(example.text_a) tokens_a = tokenizer.tokenize(text_a) tokens_b = None has_text_b = False if isinstance(example, dict): has_text_b = "text_b" in example.keys() else: has_text_b = "text_b" in example._fields if has_text_b: text_b = tokenization.convert_to_unicode(example.text_b) tokens_b = tokenizer.tokenize(text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT/ERNIE is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] text_type_ids = [] tokens.append("[CLS]") text_type_ids.append(0) for token in tokens_a: tokens.append(token) text_type_ids.append(0) tokens.append("[SEP]") text_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) text_type_ids.append(1) tokens.append("[SEP]") text_type_ids.append(1) token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) # Record = namedtuple('Record', # ['token_ids', 'text_type_ids', 'position_ids']) # record = Record( # token_ids=token_ids, # text_type_ids=text_type_ids, # position_ids=position_ids) return [token_ids, text_type_ids, position_ids] def batch_reader(self, examples, batch_size, in_tokens, phase): batch = [] total_token_num = 0 if len(examples) < batch_size: raise Exception('MaskLM dataset contains too few samples. Expect more than '+str(batch_size)) for e in examples: parsed_line = self._convert_example_to_record(e, self.max_seq_len, self.tokenizer) to_append = len(batch) < batch_size if to_append: batch.append(parsed_line) total_token_num += len(parsed_line[0]) else: yield batch, total_token_num batch = [parsed_line] total_token_num = len(parsed_line[0]) if len(batch) > 0 and phase == 'pred': yield batch, total_token_num def data_generator(self, input_file, batch_size, epoch, dev_count=1, shuffle=True, phase=None): examples = self._read_tsv(input_file) if phase is None: phase = 'all' self.examples[phase] = examples def wrapper(): all_dev_batches = [] if epoch is None: num_epochs = 99999999 else: num_epochs = epoch for epoch_index in range(num_epochs): if phase == "train": self.current_example = 0 self.current_epoch = epoch_index if shuffle: np.random.shuffle(examples) all_dev_batches = [] for batch_data, num_tokens in self.batch_reader(examples, batch_size, self.in_tokens, phase=phase): batch_data = prepare_batch_data( batch_data, num_tokens, voc_size=len(self.vocab), pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=self.mask_id, # max_len=self.max_seq_len, # 注意,如果padding到最大长度,会导致mask_pos与实际位置不对应。因为mask pos是基于batch内最大长度来计算的。 return_input_mask=True, return_max_len=False, return_num_token=False) if len(all_dev_batches) < dev_count: all_dev_batches.append(batch_data) if len(all_dev_batches) == dev_count: for batch in all_dev_batches: yield batch all_dev_batches = [] return wrapper class SequenceLabelReader(BaseReader): def _pad_batch_records(self, batch_records): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] batch_label_ids = [record.label_ids for record in batch_records] # padding padded_token_ids, input_mask, batch_seq_lens = pad_batch_data( batch_token_ids, pad_idx=self.pad_id, return_input_mask=True, return_seq_lens=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, pad_idx=self.pad_id) padded_label_ids = pad_batch_data( batch_label_ids, pad_idx=len(self.label_map) - 1) padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_text_type_ids, padded_position_ids, padded_task_ids, input_mask, padded_label_ids, batch_seq_lens ] return return_list def _reseg_token_label(self, tokens, labels, tokenizer): assert len(tokens) == len(labels) ret_tokens = [] ret_labels = [] for token, label in zip(tokens, labels): sub_token = tokenizer.tokenize(token) if len(sub_token) == 0: continue ret_tokens.extend(sub_token) if len(sub_token) == 1: ret_labels.append(label) continue if label == "O" or label.startswith("I-"): ret_labels.extend([label] * len(sub_token)) elif label.startswith("B-"): i_label = "I-" + label[2:] ret_labels.extend([label] + [i_label] * (len(sub_token) - 1)) elif label.startswith("S-"): b_laebl = "B-" + label[2:] e_label = "E-" + label[2:] i_label = "I-" + label[2:] ret_labels.extend([b_laebl] + [i_label] * (len(sub_token) - 2) + [e_label]) elif label.startswith("E-"): i_label = "I-" + label[2:] ret_labels.extend([i_label] * (len(sub_token) - 1) + [label]) assert len(ret_tokens) == len(ret_labels) return ret_tokens, ret_labels def _convert_example_to_record(self, example, max_seq_length, tokenizer): tokens = tokenization.convert_to_unicode(example.text_a).split(u"") labels = tokenization.convert_to_unicode(example.label).split(u"") tokens, labels = self._reseg_token_label(tokens, labels, tokenizer) if len(tokens) > max_seq_length - 2: tokens = tokens[0:(max_seq_length - 2)] labels = labels[0:(max_seq_length - 2)] tokens = ["[CLS]"] + tokens + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) text_type_ids = [0] * len(token_ids) no_entity_id = len(self.label_map) - 1 label_ids = [no_entity_id] + [ self.label_map[label] for label in labels ] + [no_entity_id] Record = namedtuple( 'Record', ['token_ids', 'text_type_ids', 'position_ids', 'label_ids']) record = Record( token_ids=token_ids, text_type_ids=text_type_ids, position_ids=position_ids, label_ids=label_ids) return record class ExtractEmbeddingReader(BaseReader): def _pad_batch_records(self, batch_records): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] # padding padded_token_ids, input_mask, seq_lens = pad_batch_data( batch_token_ids, pad_idx=self.pad_id, return_input_mask=True, return_seq_lens=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, pad_idx=self.pad_id) padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_text_type_ids, padded_position_ids, padded_task_ids, input_mask, seq_lens ] return return_list class MRCReader(BaseReader): def __init__(self, vocab_path, label_map_config=None, max_seq_len=512, do_lower_case=True, in_tokens=False, random_seed=None, tokenizer="FullTokenizer", is_classify=True, is_regression=False, for_cn=True, task_id=0, doc_stride=128, max_query_length=64, remove_noanswer=True): self.max_seq_len = max_seq_len self.tokenizer = tokenization.FullTokenizer( vocab_file=vocab_path, do_lower_case=do_lower_case) self.vocab = self.tokenizer.vocab self.pad_id = self.vocab["[PAD]"] self.cls_id = self.vocab["[CLS]"] self.sep_id = self.vocab["[SEP]"] self.in_tokens = in_tokens self.for_cn = for_cn self.task_id = task_id self.doc_stride = doc_stride self.max_query_length = max_query_length self.examples = {} self.features = {} self.remove_noanswer = remove_noanswer if random_seed is not None: np.random.seed(random_seed) self.current_example = 0 self.current_epoch = 0 self.num_examples = 0 self.Example = namedtuple('Example', ['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text', 'start_position', 'end_position']) self.Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index", "tokens", "token_to_orig_map", "token_is_max_context", "token_ids", "position_ids", "text_type_ids", "start_position", "end_position"]) self.DocSpan = namedtuple("DocSpan", ["start", "length"]) def _read_json(self, input_file, is_training): examples = [] with open(input_file, "r", encoding='utf8') as f: input_data = json.load(f)["data"] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_pos = None end_pos = None orig_answer_text = None if is_training: if len(qa["answers"]) != 1: raise ValueError( "For training, each question should have exactly 1 answer." ) answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) doc_tokens = [ paragraph_text[:answer_offset], paragraph_text[answer_offset:answer_offset + answer_length], paragraph_text[answer_offset + answer_length:] ] start_pos = 1 end_pos = 1 actual_text = " ".join(doc_tokens[start_pos:(end_pos + 1)]) if actual_text.find(orig_answer_text) == -1: log.info("Could not find answer: '%s' vs. '%s'", actual_text, orig_answer_text) continue else: doc_tokens = tokenization.tokenize_chinese_chars( paragraph_text) example = self.Example( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_pos, end_position=end_pos) examples.append(example) return examples def _improve_answer_span(self, doc_tokens, input_start, input_end, tokenizer, orig_answer_text): tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(self, doc_spans, cur_span_index, position): best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _convert_example_to_feature(self, examples, max_seq_length, tokenizer, is_training, remove_noanswer=True): features = [] unique_id = 1000000000 print('converting examples to features...') for (example_index, example) in enumerate(examples): if example_index % 1000 == 0: print('processing {}th example...'.format(example_index)) query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > self.max_query_length: query_tokens = query_tokens[0:self.max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = self._improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(self.DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, self.doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} text_type_ids = [] tokens.append("[CLS]") text_type_ids.append(0) for token in query_tokens: tokens.append(token) text_type_ids.append(0) tokens.append("[SEP]") text_type_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[ split_token_index] is_max_context = self._check_is_max_context( doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) text_type_ids.append(1) tokens.append("[SEP]") text_type_ids.append(1) token_ids = tokenizer.convert_tokens_to_ids(tokens) position_ids = list(range(len(token_ids))) start_position = None end_position = None if is_training: doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 if remove_noanswer: continue else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset feature = self.Feature( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, token_ids=token_ids, position_ids=position_ids, text_type_ids=text_type_ids, start_position=start_position, end_position=end_position) features.append(feature) unique_id += 1 return features def _prepare_batch_data(self, records, batch_size, phase=None): """generate batch records""" batch_records, max_len = [], 0 if len(records) < batch_size: raise Exception('mrc dataset contains too few samples. Expect more than '+str(batch_size)) for index, record in enumerate(records): if phase == "train": self.current_example = index max_len = max(max_len, len(record.token_ids)) if self.in_tokens: to_append = (len(batch_records) + 1) * max_len <= batch_size else: to_append = len(batch_records) < batch_size if to_append: batch_records.append(record) else: yield self._pad_batch_records(batch_records, phase == "train") batch_records, max_len = [record], len(record.token_ids) if phase == 'pred' and batch_records: yield self._pad_batch_records(batch_records, phase == "train") def _pad_batch_records(self, batch_records, is_training): batch_token_ids = [record.token_ids for record in batch_records] batch_text_type_ids = [record.text_type_ids for record in batch_records] batch_position_ids = [record.position_ids for record in batch_records] if is_training: batch_start_position = [ record.start_position for record in batch_records ] batch_end_position = [ record.end_position for record in batch_records ] batch_start_position = np.array(batch_start_position).astype( "int64").reshape([-1]) batch_end_position = np.array(batch_end_position).astype( "int64").reshape([-1]) else: batch_size = len(batch_token_ids) batch_start_position = np.zeros( shape=[batch_size], dtype="int64") batch_end_position = np.zeros(shape=[batch_size], dtype="int64") batch_unique_ids = [record.unique_id for record in batch_records] batch_unique_ids = np.array(batch_unique_ids).astype("int64").reshape( [-1]) # padding padded_token_ids, input_mask = pad_batch_data( batch_token_ids, pad_idx=self.pad_id, return_input_mask=True) padded_text_type_ids = pad_batch_data( batch_text_type_ids, pad_idx=self.pad_id) padded_position_ids = pad_batch_data( batch_position_ids, pad_idx=self.pad_id) padded_task_ids = np.ones_like( padded_token_ids, dtype="int64") * self.task_id return_list = [ padded_token_ids, padded_text_type_ids, padded_position_ids, padded_task_ids, input_mask, batch_start_position, batch_end_position, batch_unique_ids ] return return_list def get_num_examples(self, phase): return len(self.features[phase]) def get_features(self, phase): return self.features[phase] def get_examples(self, phase): return self.examples[phase] def data_generator(self, input_file, batch_size, epoch, dev_count=1, shuffle=True, phase=None): examples = self.examples.get(phase, None) features = self.features.get(phase, None) if not examples: examples = self._read_json(input_file, phase == "train") features = self._convert_example_to_feature( examples, self.max_seq_len, self.tokenizer, phase == "train", remove_noanswer=self.remove_noanswer) self.examples[phase] = examples self.features[phase] = features def wrapper(): all_dev_batches = [] if epoch is None: num_epochs = 99999999 else: num_epochs = epoch for epoch_index in range(num_epochs): if phase == "train": self.current_example = 0 self.current_epoch = epoch_index if phase == "train" and shuffle: np.random.shuffle(features) for batch_data in self._prepare_batch_data( features, batch_size, phase=phase): if len(all_dev_batches) < dev_count: all_dev_batches.append(batch_data) if len(all_dev_batches) == dev_count: for batch in all_dev_batches: yield batch all_dev_batches = [] return wrapper if __name__ == '__main__': pass