# -*- coding: utf-8 -*- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Evaluation script for CMRC 2018 version: v5 Note: v5 formatted output, add usage description v4 fixed segmentation issues ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from collections import Counter, OrderedDict import string import re import argparse import json import sys import nltk import pdb # split Chinese with English def mixed_segmentation(in_str, rm_punc=False): in_str = in_str.lower().strip() segs_out = [] temp_str = "" sp_char = [ '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(', ')', '-', '~', '『', '』' ] for char in in_str: if rm_punc and char in sp_char: continue if re.search(r'[\u4e00-\u9fa5]', char) or char in sp_char: if temp_str != "": ss = nltk.word_tokenize(temp_str) segs_out.extend(ss) temp_str = "" segs_out.append(char) else: temp_str += char #handling last part if temp_str != "": ss = nltk.word_tokenize(temp_str) segs_out.extend(ss) return segs_out # remove punctuation def remove_punctuation(in_str): in_str = in_str.lower().strip() sp_char = [ '-', ':', '_', '*', '^', '/', '\\', '~', '`', '+', '=', ',', '。', ':', '?', '!', '“', '”', ';', '’', '《', '》', '……', '·', '、', '「', '」', '(', ')', '-', '~', '『', '』' ] out_segs = [] for char in in_str: if char in sp_char: continue else: out_segs.append(char) return ''.join(out_segs) # find longest common string def find_lcs(s1, s2): m = [[0 for i in range(len(s2) + 1)] for j in range(len(s1) + 1)] mmax = 0 p = 0 for i in range(len(s1)): for j in range(len(s2)): if s1[i] == s2[j]: m[i + 1][j + 1] = m[i][j] + 1 if m[i + 1][j + 1] > mmax: mmax = m[i + 1][j + 1] p = i + 1 return s1[p - mmax:p], mmax # def evaluate(ground_truth_file, prediction_file): f1 = 0 em = 0 total_count = 0 skip_count = 0 for instances in ground_truth_file["data"]: for instance in instances["paragraphs"]: context_text = instance['context'].strip() for qas in instance['qas']: total_count += 1 query_id = qas['id'].strip() query_text = qas['question'].strip() answers = [ans["text"] for ans in qas["answers"]] if query_id not in prediction_file: print('Unanswered question: {}\n'.format( query_id)) skip_count += 1 continue prediction = prediction_file[query_id] f1 += calc_f1_score(answers, prediction) em += calc_em_score(answers, prediction) f1_score = 100.0 * f1 / total_count em_score = 100.0 * em / total_count return f1_score, em_score, total_count, skip_count def calc_f1_score(answers, prediction): f1_scores = [] for ans in answers: ans_segs = mixed_segmentation(ans, rm_punc=True) prediction_segs = mixed_segmentation(prediction, rm_punc=True) lcs, lcs_len = find_lcs(ans_segs, prediction_segs) if lcs_len == 0: f1_scores.append(0) continue precision = 1.0 * lcs_len / len(prediction_segs) recall = 1.0 * lcs_len / len(ans_segs) f1 = (2 * precision * recall) / (precision + recall) f1_scores.append(f1) return max(f1_scores) def calc_em_score(answers, prediction): em = 0 for ans in answers: ans_ = remove_punctuation(ans) prediction_ = remove_punctuation(prediction) if ans_ == prediction_: em = 1 break return em def eval_file(dataset_file, prediction_file): ground_truth_file = json.load(open(dataset_file, 'r')) prediction_file = json.load(open(prediction_file, 'r')) F1, EM, TOTAL, SKIP = evaluate(ground_truth_file, prediction_file) AVG = (EM + F1) * 0.5 return EM, F1, AVG, TOTAL if __name__ == '__main__': EM, F1, AVG, TOTAL = eval_file("task_data/cmrc2018/dev.json", "predictions.json") print(EM) print(F1) print(TOTAL)