## Examples 4: Machine Reading Comprehension This task is a machine reading comprehension task. The following sections detail model preparation, dataset preparation, and how to run the task. ### Step 1: Prepare Pre-trained Models & Datasets #### Pre-trianed Model The pre-training model of this mission is: [ernie-zh-base](https://github.com/PaddlePaddle/PALM/tree/r0.3-api). Make sure you have downloaded the required pre-training model in the current folder. #### Dataset This task uses the `CMRC2018` dataset. `CMRC2018` is an evaluation conducted by Chinese information society. The task of evaluation is to extract reading comprehension. Download dataset: ```shell python download.py ``` If everything goes well, there will be a folder named `data/` created with all the datas in it. Here is some example datas: ```json "paragraphs": [ { "id": "TRAIN_36", "context": "NGC 6231是一个位于天蝎座的疏散星团,天球座标为赤经16时54分,赤纬-41度48分,视觉观测大小约45角分,亮度约2.6视星等,距地球5900光年。NGC 6231年龄约为三百二十万年,是一个非常年轻的星团,星团内的最亮星是5等的天蝎座 ζ1星。用双筒望远镜或小型望远镜就能看到个别的行星。NGC 6231在1654年被意大利天文学家乔瓦尼·巴蒂斯特·霍迪尔纳(Giovanni Battista Hodierna)以Luminosae的名字首次纪录在星表中,但是未见记载于夏尔·梅西耶的天体列表和威廉·赫歇尔的深空天体目录。这个天体在1678年被爱德蒙·哈雷(I.7)、1745年被夏西亚科斯(Jean-Phillippe Loys de Cheseaux)(9)、1751年被尼可拉·路易·拉卡伊(II.13)分别再次独立发现。", "qas": [ { "question": "NGC 6231的经纬度是多少?", "id": "TRAIN_36_QUERY_0", "answers": [ { "text": "赤经16时54分,赤纬-41度48分", "answer_start": 27 } ] } ``` ### Step 2: Train & Predict The code used to perform classification task is in `run.py`. If you have prepared the pre-training model and the data set required for the task, run: ```shell python run.py ``` If you want to specify a specific gpu or use multiple gpus for training, please use **`CUDA_VISIBLE_DEVICES`**, for example: ```shell CUDA_VISIBLE_DEVICES=0,1,2 python run.py ``` Some logs will be shown below: ``` step 1/1515 (epoch 0), loss: 6.251, speed: 0.31 steps/s step 2/1515 (epoch 0), loss: 6.206, speed: 0.80 steps/s step 3/1515 (epoch 0), loss: 6.172, speed: 0.86 steps/s ``` After the run, you can view the saved models in the `outputs/` folder and the predictions in the `outputs/predict` folder. Here are some examples of predictions: ```json { "DEV_0_QUERY_0": "光 荣 和 ω-force 开 发", "DEV_0_QUERY_1": "任 天 堂 游 戏 谜 之 村 雨 城", "DEV_0_QUERY_2": "战 史 演 武 」&「 争 霸 演 武 」。", "DEV_1_QUERY_0": "大 陆 传 统 器 乐 及 戏 曲 里 面 常 用 的 打 击 乐 记 谱 方 法 , 以 中 文 字 的 声 音 模 拟 敲 击 乐 的 声 音 , 纪 录 打 击 乐 的 各 种 不 同 的 演 奏 方 法 。", "DEV_1_QUERY_1": "「 锣 鼓 点", "DEV_1_QUERY_2": "锣 鼓 的 运 用 有 约 定 俗 成 的 程 式 , 依 照 角 色 行 当 的 身 份 、 性 格 、 情 绪 以 及 环 境 , 配 合 相 应 的 锣 鼓 点", "DEV_1_QUERY_3": "鼓 、 锣 、 钹 和 板 四 类 型", "DEV_2_QUERY_0": "364.6 公 里", } ``` ### Step 3: Evaluate Once you have the prediction, you can run the evaluation script to evaluate the model: ```shell python evaluate.py ``` The evaluation results are as follows: ``` data_num: 3219 em_sroce: 0.963031997515, f1: 83.9865402973 ```