diff --git a/build/lib/paddlepalm/__init__.py b/build/lib/paddlepalm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c7b42da980cc59234467dd164536358fe26feb73 --- /dev/null +++ b/build/lib/paddlepalm/__init__.py @@ -0,0 +1,5 @@ + +import sys +from paddlepalm.mtl_controller import Controller +sys.path.append('paddlepalm') + diff --git a/build/lib/paddlepalm/backbone/__init__.py b/build/lib/paddlepalm/backbone/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/backbone/bert.py b/build/lib/paddlepalm/backbone/bert.py new file mode 100644 index 0000000000000000000000000000000000000000..05d0af531dc945d4fe0e5d885c0020dc01f5a997 --- /dev/null +++ b/build/lib/paddlepalm/backbone/bert.py @@ -0,0 +1,156 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""v1.1 +BERT model.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from paddle import fluid +from paddle.fluid import layers + +from paddlepalm.backbone.utils.transformer import pre_process_layer, encoder +from paddlepalm.interface import backbone + + +class Model(backbone): + + def __init__(self, + config, + phase): + + # self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变 + self._emb_size = config["hidden_size"] + self._n_layer = config["num_hidden_layers"] + self._n_head = config["num_attention_heads"] + self._voc_size = config["vocab_size"] + self._max_position_seq_len = config["max_position_embeddings"] + self._sent_types = config["type_vocab_size"] + self._hidden_act = config["hidden_act"] + self._prepostprocess_dropout = config["hidden_dropout_prob"] + self._attention_dropout = config["attention_probs_dropout_prob"] + + self.model_name = model_name + + self._word_emb_name = self.model_name + "word_embedding" + self._pos_emb_name = self.model_name + "pos_embedding" + self._sent_emb_name = self.model_name + "sent_embedding" + + # Initialize all weigths by truncated normal initializer, and all biases + # will be initialized by constant zero by default. + self._param_initializer = fluid.initializer.TruncatedNormal( + scale=config["initializer_range"]) + + @property + def inputs_attr(self): + return {"token_ids": [-1, self._max_position_seq_len, 1], 'int64'], + "position_ids": [-1, self._max_position_seq_len, 1], 'int64'], + "segment_ids": [-1, self._max_position_seq_len, 1], 'int64'], + "input_mask": [-1, self._max_position_seq_len, 1], 'float32']} + + @property + def outputs_attr(self): + return {"word_emb": [-1, self._max_position_seq_len, self._emb_size], + "sentence_emb": [-1, self._emb_size], + "sentence_pair_emb": [-1, self._emb_size]} + + def build(self, inputs): + src_ids = inputs['token_ids'] + pos_ids = inputs['position_ids'] + sent_ids = inputs['segment_ids'] + input_mask = inputs['input_mask'] + # padding id in vocabulary must be set to 0 + emb_out = layers.embedding( + input=src_ids, + size=[self._voc_size, self._emb_size], + dtype="float32", + param_attr=fluid.ParamAttr( + name=self._word_emb_name, initializer=self._param_initializer), + is_sparse=False) + + self.emb_out = emb_out + + position_emb_out = layers.embedding( + input=pos_ids, + size=[self._max_position_seq_len, self._emb_size], + dtype="float32", + param_attr=fluid.ParamAttr( + name=self._pos_emb_name, initializer=self._param_initializer)) + + self.position_emb_out = position_emb_out + + sent_emb_out = layers.embedding( + sent_ids, + size=[self._sent_types, self._emb_size], + dtype="float32" + param_attr=fluid.ParamAttr( + name=self._sent_emb_name, initializer=self._param_initializer)) + + self.sent_emb_out = sent_emb_out + + emb_out = emb_out + position_emb_out + sent_emb_out + + emb_out = pre_process_layer( + emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder') + + self_attn_mask = layers.matmul( + x = input_mask, y = input_mask, transpose_y = True) + + self_attn_mask = layers.scale( + x = self_attn_mask, scale = 10000.0, bias = -1.0, bias_after_scale = False) + + n_head_self_attn_mask = layers.stack( + x=[self_attn_mask] * self._n_head, axis=1) + + n_head_self_attn_mask.stop_gradient = True + + enc_out = encoder( + enc_input = emb_out, + attn_bias = n_head_self_attn_mask, + n_layer = self._n_layer, + n_head = self._n_head, + d_key = self._emb_size // self._n_head, + d_value = self._emb_size // self._n_head, + d_model = self._emb_size, + d_inner_hid = self._emb_size * 4, + prepostprocess_dropout = self._prepostprocess_dropout, + attention_dropout = self._attention_dropout, + relu_dropout = 0, + hidden_act = self._hidden_act, + preprocess_cmd = "", + postprocess_cmd = "dan", + param_initializer = self._param_initializer, + name = self.model_name + 'encoder') + + next_sent_feat = layers.slice( + input = enc_out, axes = [1], starts = [0], ends = [1]) + next_sent_feat = layers.fc( + input = next_sent_feat, + size = self._emb_size, + act = "tanh", + param_attr = fluid.ParamAttr( + name = self.model_name + "pooled_fc.w_0", + initializer = self._param_initializer), + bias_attr = "pooled_fc.b_0") + + return {'word_emb': enc_out, + 'sentence_emb': next_sent_feat, + 'sentence_pair_emb': next_sent_feat} + + def postprocess(self, rt_outputs): + pass + + diff --git a/build/lib/paddlepalm/backbone/bow.py b/build/lib/paddlepalm/backbone/bow.py new file mode 100644 index 0000000000000000000000000000000000000000..92689576318fb1b5499b306a8f5e389639c9e00f --- /dev/null +++ b/build/lib/paddlepalm/backbone/bow.py @@ -0,0 +1,63 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from paddle import fluid +from paddle.fluid import layers + +class Model(backbone): + + def __init__(self, config, phase): + + # self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变 + + self._emb_size = config["emb_size"] + self._voc_size = config["vocab_size"] + + @property + def inputs_attr(self): + return {"token_ids": [-1, self._max_position_seq_len, 1], 'int64']} + + @property + def outputs_attr(self): + return {"word_emb": [-1, self._max_position_seq_len, self._emb_size], + "sentence_emb": [-1, self._emb_size*2]} + + def build(self, inputs): + + tok_ids = inputs['token_ids'] + + emb_out = layers.embedding( + input=tok_ids, + size=[self._voc_size, self._emb_size], + dtype='float32', + param_attr=fluid.ParamAttr( + name='word_emb', + initializer=fluid.initializer.TruncatedNormal(scale=0.1)), + is_sparse=False) + + sent_emb1 = layers.reduce_mean(emb_out, axis=1) + sent_emb2 = layers.reduce_max(emb_out, axis=1) + sent_emb = layers.concat([sent_emb1, sent_emb2], axis=1) + return {'word_emb': emb_out, + 'sentence_emb': sent_emb} + + def postprocess(self, rt_outputs): + pass + + diff --git a/build/lib/paddlepalm/backbone/ernie.py b/build/lib/paddlepalm/backbone/ernie.py new file mode 100644 index 0000000000000000000000000000000000000000..7a11769b626dd6e5ec0aa03a8d140569d1bb7e0c --- /dev/null +++ b/build/lib/paddlepalm/backbone/ernie.py @@ -0,0 +1,170 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Ernie model.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + +from paddle import fluid +from paddle.fluid import layers + +from paddlepalm.backbone.utils.transformer import pre_process_layer, encoder +from paddlepalm.interface import backbone + + +class Model(backbone): + + def __init__(self, + config, + phase): + + # self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变 + + self._emb_size = config['hidden_size'] + self._n_layer = config['num_hidden_layers'] + self._n_head = config['num_attention_heads'] + self._voc_size = config['vocab_size'] + self._max_position_seq_len = config['max_position_embeddings'] + if config['sent_type_vocab_size']: + self._sent_types = config['sent_type_vocab_size'] + else: + self._sent_types = config['type_vocab_size'] + + self._task_types = config['task_type_vocab_size'] + + self._hidden_act = config['hidden_act'] + self._prepostprocess_dropout = config['hidden_dropout_prob'] + self._attention_dropout = config['attention_probs_dropout_prob'] + + self._word_emb_name = "word_embedding" + self._pos_emb_name = "pos_embedding" + self._sent_emb_name = "sent_embedding" + self._task_emb_name = "task_embedding" + self._emb_dtype = "float32" + + self._param_initializer = fluid.initializer.TruncatedNormal( + scale=config['initializer_range']) + + @property + def inputs_attr(self): + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'], + "task_ids": [[-1,-1, 1], 'int64']} + + @property + def outputs_attr(self): + return {"word_embedding": [[-1, -1, self._emb_size], 'float32'], + "encoder_outputs": [[-1, -1, self._emb_size], 'float32'], + "sentence_embedding": [[-1, self._emb_size], 'float32'], + "sentence_pair_embedding": [[-1, self._emb_size], 'float32']} + + def build(self, inputs): + + src_ids = inputs['token_ids'] + pos_ids = inputs['position_ids'] + sent_ids = inputs['segment_ids'] + input_mask = inputs['input_mask'] + task_ids = inputs['task_ids'] + + # padding id in vocabulary must be set to 0 + emb_out = fluid.layers.embedding( + input=src_ids, + size=[self._voc_size, self._emb_size], + dtype=self._emb_dtype, + param_attr=fluid.ParamAttr( + name=self._word_emb_name, initializer=self._param_initializer), + is_sparse=False) + + position_emb_out = fluid.layers.embedding( + input=pos_ids, + size=[self._max_position_seq_len, self._emb_size], + dtype=self._emb_dtype, + param_attr=fluid.ParamAttr( + name=self._pos_emb_name, initializer=self._param_initializer)) + + sent_emb_out = fluid.layers.embedding( + sent_ids, + size=[self._sent_types, self._emb_size], + dtype=self._emb_dtype, + param_attr=fluid.ParamAttr( + name=self._sent_emb_name, initializer=self._param_initializer)) + + emb_out = emb_out + position_emb_out + emb_out = emb_out + sent_emb_out + + task_emb_out = fluid.layers.embedding( + task_ids, + size=[self._task_types, self._emb_size], + dtype=self._emb_dtype, + param_attr=fluid.ParamAttr( + name=self._task_emb_name, + initializer=self._param_initializer)) + + emb_out = emb_out + task_emb_out + + emb_out = pre_process_layer( + emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder') + + self_attn_mask = fluid.layers.matmul( + x=input_mask, y=input_mask, transpose_y=True) + + self_attn_mask = fluid.layers.scale( + x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False) + n_head_self_attn_mask = fluid.layers.stack( + x=[self_attn_mask] * self._n_head, axis=1) + n_head_self_attn_mask.stop_gradient = True + + enc_out = encoder( + enc_input=emb_out, + attn_bias=n_head_self_attn_mask, + n_layer=self._n_layer, + n_head=self._n_head, + d_key=self._emb_size // self._n_head, + d_value=self._emb_size // self._n_head, + d_model=self._emb_size, + d_inner_hid=self._emb_size * 4, + prepostprocess_dropout=self._prepostprocess_dropout, + attention_dropout=self._attention_dropout, + relu_dropout=0, + hidden_act=self._hidden_act, + preprocess_cmd="", + postprocess_cmd="dan", + param_initializer=self._param_initializer, + name='encoder') + + + next_sent_feat = fluid.layers.slice( + input=enc_out, axes=[1], starts=[0], ends=[1]) + next_sent_feat = fluid.layers.reshape(next_sent_feat, [-1, next_sent_feat.shape[-1]]) + next_sent_feat = fluid.layers.fc( + input=next_sent_feat, + size=self._emb_size, + act="tanh", + param_attr=fluid.ParamAttr( + name="pooled_fc.w_0", initializer=self._param_initializer), + bias_attr="pooled_fc.b_0") + + return {'word_embedding': emb_out, + 'encoder_outputs': enc_out, + 'sentence_embedding': next_sent_feat, + 'sentence_pair_embedding': next_sent_feat} + + def postprocess(self, rt_outputs): + pass diff --git a/build/lib/paddlepalm/backbone/utils/__init__.py b/build/lib/paddlepalm/backbone/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/backbone/utils/transformer.py b/build/lib/paddlepalm/backbone/utils/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..d5aa5c75ffc9c55a71fa60576d9f5b15deacde52 --- /dev/null +++ b/build/lib/paddlepalm/backbone/utils/transformer.py @@ -0,0 +1,341 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Transformer encoder.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from functools import partial + +import paddle.fluid as fluid +import paddle.fluid.layers as layers + +def multi_head_attention(queries, + keys, + values, + attn_bias, + d_key, + d_value, + d_model, + n_head=1, + dropout_rate=0., + cache=None, + param_initializer=None, + name='multi_head_att'): + """ + Multi-Head Attention. Note that attn_bias is added to the logit before + computing softmax activiation to mask certain selected positions so that + they will not considered in attention weights. + """ + keys = queries if keys is None else keys + values = keys if values is None else values + + if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): + raise ValueError( + "Inputs: quries, keys and values should all be 3-D tensors.") + + def __compute_qkv(queries, keys, values, n_head, d_key, d_value): + """ + Add linear projection to queries, keys, and values. + """ + q = layers.fc(input=queries, + size=d_key * n_head, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_query_fc.w_0', + initializer=param_initializer), + bias_attr=name + '_query_fc.b_0') + k = layers.fc(input=keys, + size=d_key * n_head, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_key_fc.w_0', + initializer=param_initializer), + bias_attr=name + '_key_fc.b_0') + v = layers.fc(input=values, + size=d_value * n_head, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_value_fc.w_0', + initializer=param_initializer), + bias_attr=name + '_value_fc.b_0') + return q, k, v + + def __split_heads(x, n_head): + """ + Reshape the last dimension of inpunt tensor x so that it becomes two + dimensions and then transpose. Specifically, input a tensor with shape + [bs, max_sequence_length, n_head * hidden_dim] then output a tensor + with shape [bs, n_head, max_sequence_length, hidden_dim]. + """ + hidden_size = x.shape[-1] + # The value 0 in shape attr means copying the corresponding dimension + # size of the input as the output dimension size. + reshaped = layers.reshape( + x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True) + + # permuate the dimensions into: + # [batch_size, n_head, max_sequence_len, hidden_size_per_head] + return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) + + def __combine_heads(x): + """ + Transpose and then reshape the last two dimensions of inpunt tensor x + so that it becomes one dimension, which is reverse to __split_heads. + """ + if len(x.shape) == 3: return x + if len(x.shape) != 4: + raise ValueError("Input(x) should be a 4-D Tensor.") + + trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) + # The value 0 in shape attr means copying the corresponding dimension + # size of the input as the output dimension size. + return layers.reshape( + x=trans_x, + shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], + inplace=True) + + def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate): + """ + Scaled Dot-Product Attention + """ + scaled_q = layers.scale(x=q, scale=d_key**-0.5) + product = layers.matmul(x=scaled_q, y=k, transpose_y=True) + if attn_bias: + product += attn_bias + weights = layers.softmax(product) + if dropout_rate: + weights = layers.dropout( + weights, + dropout_prob=dropout_rate, + dropout_implementation="upscale_in_train", + is_test=False) + out = layers.matmul(weights, v) + return out + + q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) + + if cache is not None: # use cache and concat time steps + # Since the inplace reshape in __split_heads changes the shape of k and + # v, which is the cache input for next time step, reshape the cache + # input from the previous time step first. + k = cache["k"] = layers.concat( + [layers.reshape( + cache["k"], shape=[0, 0, d_model]), k], axis=1) + v = cache["v"] = layers.concat( + [layers.reshape( + cache["v"], shape=[0, 0, d_model]), v], axis=1) + + q = __split_heads(q, n_head) + k = __split_heads(k, n_head) + v = __split_heads(v, n_head) + + ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, + dropout_rate) + + out = __combine_heads(ctx_multiheads) + + # Project back to the model size. + proj_out = layers.fc(input=out, + size=d_model, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_output_fc.w_0', + initializer=param_initializer), + bias_attr=name + '_output_fc.b_0') + return proj_out + + +def positionwise_feed_forward(x, + d_inner_hid, + d_hid, + dropout_rate, + hidden_act, + param_initializer=None, + name='ffn'): + """ + Position-wise Feed-Forward Networks. + This module consists of two linear transformations with a ReLU activation + in between, which is applied to each position separately and identically. + """ + hidden = layers.fc(input=x, + size=d_inner_hid, + num_flatten_dims=2, + act=hidden_act, + param_attr=fluid.ParamAttr( + name=name + '_fc_0.w_0', + initializer=param_initializer), + bias_attr=name + '_fc_0.b_0') + if dropout_rate: + hidden = layers.dropout( + hidden, + dropout_prob=dropout_rate, + dropout_implementation="upscale_in_train", + is_test=False) + out = layers.fc(input=hidden, + size=d_hid, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name=name + '_fc_1.w_0', initializer=param_initializer), + bias_attr=name + '_fc_1.b_0') + return out + + +def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., + name=''): + """ + Add residual connection, layer normalization and droput to the out tensor + optionally according to the value of process_cmd. + This will be used before or after multi-head attention and position-wise + feed-forward networks. + """ + for cmd in process_cmd: + if cmd == "a": # add residual connection + out = out + prev_out if prev_out else out + elif cmd == "n": # add layer normalization + out_dtype = out.dtype + if out_dtype == fluid.core.VarDesc.VarType.FP16: + out = layers.cast(x=out, dtype="float32") + out = layers.layer_norm( + out, + begin_norm_axis=len(out.shape) - 1, + param_attr=fluid.ParamAttr( + name=name + '_layer_norm_scale', + initializer=fluid.initializer.Constant(1.)), + bias_attr=fluid.ParamAttr( + name=name + '_layer_norm_bias', + initializer=fluid.initializer.Constant(0.))) + if out_dtype == fluid.core.VarDesc.VarType.FP16: + out = layers.cast(x=out, dtype="float16") + elif cmd == "d": # add dropout + if dropout_rate: + out = layers.dropout( + out, + dropout_prob=dropout_rate, + dropout_implementation="upscale_in_train", + is_test=False) + return out + + +pre_process_layer = partial(pre_post_process_layer, None) +post_process_layer = pre_post_process_layer + + +def encoder_layer(enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd="n", + postprocess_cmd="da", + param_initializer=None, + name=''): + """The encoder layers that can be stacked to form a deep encoder. + This module consits of a multi-head (self) attention followed by + position-wise feed-forward networks and both the two components companied + with the post_process_layer to add residual connection, layer normalization + and droput. + """ + attn_output = multi_head_attention( + pre_process_layer( + enc_input, + preprocess_cmd, + prepostprocess_dropout, + name=name + '_pre_att'), + None, + None, + attn_bias, + d_key, + d_value, + d_model, + n_head, + attention_dropout, + param_initializer=param_initializer, + name=name + '_multi_head_att') + attn_output = post_process_layer( + enc_input, + attn_output, + postprocess_cmd, + prepostprocess_dropout, + name=name + '_post_att') + ffd_output = positionwise_feed_forward( + pre_process_layer( + attn_output, + preprocess_cmd, + prepostprocess_dropout, + name=name + '_pre_ffn'), + d_inner_hid, + d_model, + relu_dropout, + hidden_act, + param_initializer=param_initializer, + name=name + '_ffn') + return post_process_layer( + attn_output, + ffd_output, + postprocess_cmd, + prepostprocess_dropout, + name=name + '_post_ffn') + + +def encoder(enc_input, + attn_bias, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd="n", + postprocess_cmd="da", + param_initializer=None, + name=''): + """ + The encoder is composed of a stack of identical layers returned by calling + encoder_layer. + """ + for i in range(n_layer): + enc_output = encoder_layer( + enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + prepostprocess_dropout, + attention_dropout, + relu_dropout, + hidden_act, + preprocess_cmd, + postprocess_cmd, + param_initializer=param_initializer, + name=name + '_layer_' + str(i)) + enc_input = enc_output + enc_output = pre_process_layer( + enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder") + + return enc_output diff --git a/build/lib/paddlepalm/default_settings.py b/build/lib/paddlepalm/default_settings.py new file mode 100644 index 0000000000000000000000000000000000000000..4f003eabae9c20d191c325dbb865cf4e578440ca --- /dev/null +++ b/build/lib/paddlepalm/default_settings.py @@ -0,0 +1,42 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +BACKBONE_DIR='paddlepalm.backbone' +TASK_INSTANCE_DIR='paddlepalm.task_instance' +READER_DIR='paddlepalm.reader' +PARADIGM_DIR='paddlepalm.task_paradigm' +OPTIMIZER_DIR='paddlepalm.optimizer' +OPTIMIZE_METHOD='optimize' + +REQUIRED_ARGS={ + 'task_instance': str, + 'backbone': str, + 'optimizer': str, + 'learning_rate': float, + 'batch_size': int + } + +OPTIONAL_ARGS={ + 'mix_ratio': str, + 'target_tag': str, + 'reuse_rag': str + } + +TASK_REQUIRED_ARGS={ + 'paradigm': str, + 'reader': str, + 'train_file': str + } + diff --git a/build/lib/paddlepalm/interface.py b/build/lib/paddlepalm/interface.py new file mode 100644 index 0000000000000000000000000000000000000000..06c93ac5bb46561e3ba45cc676cb542453890027 --- /dev/null +++ b/build/lib/paddlepalm/interface.py @@ -0,0 +1,173 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""v1.1""" + +class reader(object): + """interface of data manager.""" + + def __init__(self, config): + assert isinstance(config, dict) + + # @property + # def inputs_attr(self): + # """描述reader输入对象的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1. + # Return: + # dict类型。对各个输入对象的属性描述。例如, + # 对于文本分类任务,可能需要包含输入文本和所属标签的id + # {"text": ([], 'str'), + # "label": ([], 'int')} + # 对于标注任务,可能需要输入词序列和对应的标签 + # {"tokens", ([-1], 'str'), + # "tags", ([-1], 'str')} + # 对于机器阅读理解任务,可能需要包含上下文、问题、回答、答案区域的起止位置等 + # {"paragraph", ([], 'str'), + # "question", ([], 'str'), + # "start_position", ([], 'int') + # """ + # raise NotImplementedError() + + @property + def outputs_attr(self): + """描述reader输出对象(被yield出的对象)的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 + 注意:当使用mini-batch梯度下降学习策略时,,应为常规的输入对象设置batch_size维度(一般为-1) + Return: + dict类型。对各个输入对象的属性描述。例如, + 对于文本分类和匹配任务,yield的输出内容可能包含如下的对象(下游backbone和task可按需访问其中的对象) + {"token_ids": ([-1, max_len], 'int64'), + "input_ids": ([-1, max_len], 'int64'), + "segment_ids": ([-1, max_len], 'int64'), + "input_mask": ([-1, max_len], 'float32'), + "label": ([-1], 'int')} + """ + raise NotImplementedError() + + # def parse_line(self): + # """框架内部使用字典描述每个样本,字典的key为inputs_attr,value为每个input对应的符合attr描述的值。 + # 该函数负责将文本行解析成符合inputs_attr描述的字典类型的样本。默认的parse_line方法会读取json格式的数据集文件,数据集的每一行为json格式描述的样本。 + # 用户可通过对该方法的继承改写来适配不同格式的数据集,例如csv格式甚至tfrecord文件。 + # """ + # raise NotImplementedError() + # + # def tokenize(self, line): + # """框架中内置了word piece tokenizer等分词器,用户可通过修改tokenizer超参数来制定使用的分词器,若内置的分词器均无法满足需求,用户可通过对该方法的继承改写来自定义分词器。 + # Args: + # - line: a unicode string. + # Return: + # a list of tokens + # """ + # raise NotImplementedError() + + def iterator(self): + """数据集遍历接口,注意,当数据集遍历到尾部时该接口应自动完成指针重置,即重新从数据集头部开始新的遍历。 + Yield: + (dict) elements that meet the requirements in output_templete + """ + raise NotImplementedError() + + @property + def num_examples(self): + """数据集中的样本数量,即每个epoch中iterator所生成的样本数。注意,使用滑动窗口等可能导致数据集样本数发生变化的策略时,该接口应返回runtime阶段的实际样本数。""" + raise NotImplementedError() + + + +class backbone(object): + """interface of backbone model.""" + + def __init__(self, config, phase): + """ + Args: + config: dict类型。描述了 多任务配置文件+预训练模型配置文件 中定义超参数 + phase: str类型。运行阶段,目前支持train和predict + """ + assert isinstance(config, dict) + + @property + def inputs_attr(self): + """描述backbone从reader处需要得到的输入对象的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 + Return: + dict类型。对各个输入对象的属性描述。例如, + 对于文本分类和匹配任务,bert backbone依赖的reader对象主要包含如下的对象 + {"token_ids": ([-1, max_len], 'int64'), + "input_ids": ([-1, max_len], 'int64'), + "segment_ids": ([-1, max_len], 'int64'), + "input_mask": ([-1, max_len], 'float32')}""" + raise NotImplementedError() + + @property + def outputs_attr(self): + """描述backbone输出对象的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 + Return: + dict类型。对各个输出对象的属性描述。例如, + 对于文本分类和匹配任务,bert backbone的输出内容可能包含如下的对象 + {"word_emb": ([-1, max_seqlen, word_emb_size], 'float32'), + "sentence_emb": ([-1, hidden_size], 'float32'), + "sim_vec": ([-1, hidden_size], 'float32')}""" + raise NotImplementedError() + + def build(self, inputs): + """建立backbone的计算图。将符合inputs_attr描述的静态图Variable输入映射成符合outputs_attr描述的静态图Variable输出。 + Args: + inputs: dict类型。字典中包含inputs_attr中的对象名到计算图Variable的映射,inputs中至少会包含inputs_attr中定义的对象 + Return: + 需要输出的计算图变量,输出对象会被加入到fetch_list中,从而在每个训练/推理step时得到runtime的计算结果,该计算结果会被传入postprocess方法中供用户处理。 + """ + raise NotImplementedError() + + + + +class task_paradigm(object): + + def __init__(self, config, phase, backbone_config): + """ + config: dict类型。描述了 任务实例(task instance)+多任务配置文件 中定义超参数 + phase: str类型。运行阶段,目前支持train和predict + """ + + @property + def inputs_attrs(self): + """描述task_layer需要从reader, backbone等输入对象集合所读取到的输入对象的属性,第一级key为对象集和的名字,如backbone,reader等(后续会支持更灵活的输入),第二级key为对象集和中各对象的属性,包括对象的名字,shape和dtype。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 + Return: + dict类型。对各个对象集及其输入对象的属性描述。""" + raise NotImplementedError() + + @property + def outputs_attr(self): + """描述task输出对象的属性,包括对象的名字,shape和dtype。输出对象会被加入到fetch_list中,从而在每个训练/推理step时得到runtime的计算结果,该计算结果会被传入postprocess方法中供用户处理。 + 当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 + Return: + dict类型。对各个输入对象的属性描述。注意,训练阶段必须包含名为loss的输出对象。 + """ + + raise NotImplementedError() + + def build(self, inputs): + """建立task_layer的计算图。将符合inputs_attrs描述的来自各个对象集的静态图Variables映射成符合outputs_attr描述的静态图Variable输出。 + Args: + inputs: dict类型。字典中包含inputs_attrs中的对象名到计算图Variable的映射,inputs中至少会包含inputs_attr中定义的对象 + Return: + 需要输出的计算图变量,输出对象会被加入到fetch_list中,从而在每个训练/推理step时得到runtime的计算结果,该计算结果会被传入postprocess方法中供用户处理。 + + """ + raise NotImplementedError() + + def postprocess(self, rt_outputs): + """每个训练或推理step后针对当前batch的task_layer的runtime计算结果进行相关后处理。注意,rt_outputs除了包含build方法,还自动包含了loss的计算结果。""" + pass + + def post_postprocess(self, global_buffer): + pass + diff --git a/build/lib/paddlepalm/mtl_controller.py b/build/lib/paddlepalm/mtl_controller.py new file mode 100644 index 0000000000000000000000000000000000000000..35500244cf27011bf03c2207d7c7f88280c92d7d --- /dev/null +++ b/build/lib/paddlepalm/mtl_controller.py @@ -0,0 +1,717 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys +import importlib +import multiprocessing +from paddle import fluid +from paddle.fluid import layers +import yaml +import json +import logging +import time +import numpy as np + +from paddlepalm.utils.saver import init_pretraining_params, init_checkpoint +from paddlepalm.utils.config_helper import PDConfig +from paddlepalm.utils.print_helper import print_dict +from paddlepalm.utils.reader_helper import create_net_inputs, create_iterator_fn, create_joint_iterator_fn, merge_input_attrs + +from paddlepalm.default_settings import * +from paddlepalm.task_instance import TaskInstance, check_instances + +DEBUG=False +VERBOSE=0 + +def _get_basename(f): + return os.path.splitext(f)[0] + + +def _get_suffix(f): + return os.path.splitext(f)[-1] + + +def _parse_yaml(f, asdict=True, support_cmd_line=False): + assert os.path.exists(f), "file {} not found.".format(f) + if support_cmd_line: + args = PDConfig(yaml_file=f, fuse_args=True) + args.build() + return args.asdict() if asdict else args + else: + if asdict: + with open(f, "r") as fin: + yaml_config = yaml.load(fin, Loader=yaml.SafeLoader) + return yaml_config + else: + raise NotImplementedError() + + +def _parse_json(f, asdict=True, support_cmd_line=False): + assert os.path.exists(f), "file {} not found.".format(f) + if support_cmd_line: + args = PDConfig(json_file=f, fuse_args=support_cmd_line) + args.build() + return args.asdict() if asdict else args + else: + if asdict: + with open(f, "r") as fin: + config = json.load(fin) + return config + else: + raise NotImplementedError() + + +def _parse_list(string, astype=str): + assert isinstance(string, str), "{} is not a string.".format(string) + if ',' not in string: + return [astype(string)] + string = string.replace(',', ' ') + return [astype(i) for i in string.split()] + + +def _try_float(s): + try: + float(s) + return(float(s)) + except: + return s + + +def _check_conf(conf, checklist=None): + assert isinstance(conf, dict), "{} is not a dict.".format(conf) + ret = {} + for k,v in conf.items(): + if isinstance(v, str): + v = _try_float(v) + ret[k] = v + if checklist is not None: + for k, t in checklist: + assert k in ret, "required argument {} is NOT exist in config file.".format(k) + assert isintance(ret[k], t), "value type of argument {} should be {}".format(k, t) + return ret + + +# TODO: 增加None机制,允许hidden size、batch size和seqlen设置为None +def _check_io(in_attr, out_attr, strict=False, in_name="left", out_name="right"): + for name, attr in in_attr.items(): + assert name in out_attr, in_name+': '+name+' not found in '+out_name + if attr != out_attr[name]: + if strict: + raise ValueError(name+': shape or dtype not consistent!') + else: + logging.warning('{}: shape or dtype not consistent!\n{}:\n{}\n{}:\n{}'.format(name, in_name, attr, out_name, out_attr[name])) + + +def _merge_conf(conf1, conf2, conf1_first=True, strict=False): + assert isinstance(conf1, dict), "{} is not a dict.".format(conf1) + assert isinstance(conf2, dict), "{} is not a dict.".format(conf2) + base_conf = conf2 if conf1_first else conf1 + base_conf = base_conf.copy() + new_conf = conf1 if conf1_first else conf2 + + for k, v in new_conf.items(): + if k in base_conf: + if base_conf[k] != v: + raise Warning("value of argument {} has been updated to {}.".format(k, v)) + else: + if strict: + continue + + base_conf[k] = v + return base_conf + + +def _encode_inputs(inputs, scope_name, sep='/', cand_set=None): + outputs = {} + for k, v in inputs.items(): + if cand_set is not None: + if k in cand_set: + outputs[k] = v + if scope_name+sep+k in cand_set: + outputs[scope_name+sep+k] = v + else: + outputs[scope_name+sep+k] = v + return outputs + + +def _decode_inputs(inputs, scope_name, sep='/', keep_unk_keys=True): + outputs = {} + for name, value in inputs.items(): + # var for backbone are also available to tasks + if keep_unk_keys and sep not in name: + outputs[name] = value + # var for this inst + if name.startswith(scope_name+'/'): + outputs[name[len(scope_name+'/'):]] = value + return outputs + + +def _init_env(use_gpu): + if use_gpu: + place = fluid.CUDAPlace(0) + dev_count = fluid.core.get_cuda_device_count() + else: + place = fluid.CPUPlace() + dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) + return fluid.Executor(place), dev_count + + +def _fit_attr(conf, fit_attr, strict=False): + for i, attr in fit_attr.items(): + if i not in conf: + if strict: + raise Exception('Argument {} is required to create a controller.'.format(i)) + else: + continue + conf[i] = attr(conf[i]) + return conf + + +class Controller(object): + + def __init__(self, config=None, task_dir='.', for_train=True): + """ + Args: + config: (str|dict) 字符串类型时,给出yaml格式的config配置文件路径; + """ + + self._for_train = for_train + # default mtl_conf + # if config is None and config_path is None: + # raise ValueError('For config and config_path, at least one of them should be set.') + + if isinstance(config, str): + mtl_conf = _parse_yaml(config, support_cmd_line=True) + # if config is not None: + # mtl_conf = _merge_conf(config, mtl_conf) + else: + mtl_conf = config + + mtl_conf = _check_conf(mtl_conf) + mtl_conf = _fit_attr(mtl_conf, REQUIRED_ARGS, strict=True) + mtl_conf = _fit_attr(mtl_conf, OPTIONAL_ARGS, strict=False) + + exe, dev_count = _init_env(use_gpu=mtl_conf.get('use_gpu', True)) + self.exe = exe + self.dev_count = dev_count + + print_dict(mtl_conf, title='main configuration') + + # parse task instances and target tags + instnames = _parse_list(mtl_conf['task_instance']) + assert len(instnames) == len(set(instnames)), "repeated task_instance is NOT supported." + num_instances = len(instnames) + self.num_instances = num_instances + + instname_to_conf = {} + instname_to_id = {} + for id, instname in enumerate(instnames): + instpath = os.path.join(task_dir, instname+'.yaml') + conf = _parse_yaml(instpath, support_cmd_line=False) + # conf = _check_conf(conf, TASK_INSTANCE_REQUIRED_ARGS) + conf = _check_conf(conf) + temp_conf = _merge_conf(mtl_conf, conf, strict=True) + print_dict(temp_conf, title='{} configuration'.format(instname)) + conf = _merge_conf(mtl_conf, conf) + + instname_to_conf[instname] = conf + instname_to_id[instname] = id + + # create task instances + instances = [] + for name in instnames: + instances.append(TaskInstance(name, instname_to_id[name], instname_to_conf[name])) + + check_instances(instances) + + # parse target_tag + if 'target_tag' in mtl_conf: + target_tag = str(mtl_conf['target_tag']) + tags = _parse_list(target_tag, astype=int) + assert len(tags) == len(instnames), "number of target_tag is NOT consistent with that in task_instance." + for tag, inst in zip(tags, instances): + inst.is_target = tag + else: + tags = [i.is_target for i in instances] + num_targets = sum(tags) + num_auxes = num_instances - num_targets + + # parse mix ratios + if 'mix_ratio' in mtl_conf: + mix_ratio = str(mtl_conf['mix_ratio']) + mrs = _parse_list(mix_ratio, astype=float) + assert len(mrs) == num_instances, "number of mix_ratios is NOT consistent with num_instances." + else: + # TODO: 增加joint training模式,让num_epochs平等的作用于每个instance + mrs = [1.0] * num_instances + + for mr, inst in zip(mrs, instances): + inst.mix_ratio = mr + + # parse task layer reuse tags + instname_to_reusehost = {i:i for i in instnames} + if 'task_reuse_tag' in mtl_conf: + tags = _parse_list(mtl_conf['task_reuse_tag'], astype=int) + assert len(tags) == num_targets, 'number of reuse_tags is NOT consistent with number of instances.' + else: + tags = [] + mapper = {} + for inst in instances: + # 有环则tag_id + 1,否则被mapper shutdown + history = set() + history.add(inst.name) + cur_inst = inst + while True: + # 发现有环 + if cur_inst.task_reuse_scope in history: + mapper[inst.name] = len(tags) + break + # 发现在mapper中 + elif cur_inst.task_reuse_scope in mapper: + mapper[inst.name] = mapper[cur_inst.task_reuse_scope] + break + else: + cur_inst = name_to_instance[cur_inst.task_reuse_scope] + history.add(cur_inst.name) + + tags.append(mapper[inst.name]) + # 注意,上面这段需要做单元测试 + + for i in range(1, num_instances): + for j in range(i): + if tags[i] == tags[j]: + # check paradigm of reused tasks + assert instances[i].task_paradigm == \ + instances[j].task_paradigm, \ + "paradigm of reuse tasks should be consistent" + instances[i].task_reuse_scope = instances[j].name + break + + # parse Reader and Paradigm for each instance + for inst in instances: + reader_name = inst.config['reader'] + reader_mod = importlib.import_module(READER_DIR + '.' + reader_name) + Reader = getattr(reader_mod, 'Reader') + + parad_name = inst.config['paradigm'] + parad_mod = importlib.import_module(PARADIGM_DIR + '.' + parad_name) + Paradigm = getattr(parad_mod, 'TaskParadigm') + + inst.Reader = Reader + inst.Paradigm = Paradigm + + # prepare backbone + if 'backbone_config_path' in mtl_conf: + bb_conf = _parse_json(mtl_conf['backbone_config_path']) + bb_conf = _merge_conf(mtl_conf, bb_conf) + else: + bb_conf = mtl_conf + print_dict(bb_conf, title='backbone configuration'.format(instname)) + + bb_name = mtl_conf['backbone'] + bb_mod = importlib.import_module(BACKBONE_DIR + '.' + bb_name) + Backbone = getattr(bb_mod, 'Model') + + self.instances = instances + self.mrs = mrs + self.Backbone = Backbone + self.bb_conf = bb_conf + self.bb_name = bb_name + + self.has_init_train = False + self.has_init_pred = False + + if self._for_train: + print("initialing for training...") + self._init_train() + self.has_init_train = True + + def _init_train(self): + + instances = self.instances + Backbone = self.Backbone + bb_conf = self.bb_conf + bb_name = self.bb_name + dev_count = self.dev_count + num_instances = len(instances) + mrs = self.mrs + + # set first_target/main task instance + main_inst = None + for inst in instances: + if inst.is_target: + main_inst = inst + inst.is_first_target = True + break + main_conf = main_inst.config + if not os.path.exists(main_conf['save_path']): + os.makedirs(main_conf['save_path']) + + # prepare backbone + train_backbone = Backbone(bb_conf, phase='train') + pred_backbone = Backbone(bb_conf, phase='pred') + + # create reader, task + # then check i/o across reader, backbone and task_layer + task_attrs = [] + pred_task_attrs = [] + for inst in instances: + + train_reader = inst.Reader(inst.config, phase='train') + inst.reader['train'] = train_reader + train_parad = inst.Paradigm(inst.config, phase='train', backbone_config=bb_conf) + inst.task_layer['train'] = train_parad + task_attr_from_reader = _encode_inputs(train_parad.inputs_attrs['reader'], inst.name) + task_attrs.append(task_attr_from_reader) + + _check_io(train_backbone.inputs_attr, train_reader.outputs_attr, in_name=bb_name+'_backbone', out_name='reader.train') + _check_io(train_parad.inputs_attrs['reader'], train_reader.outputs_attr, in_name='task_paradigm.train.reader', out_name='reader.train') + _check_io(train_parad.inputs_attrs['backbone'], train_backbone.outputs_attr, in_name='task_paradigm.train.backbone', out_name=bb_name+'_backbone') + + if inst.is_target: + if 'pred_file' not in inst.config: + inst.config['pred_file'] = '' + pred_reader = inst.Reader(inst.config, phase='pred') + pred_parad = inst.Paradigm(inst.config, phase='pred', backbone_config=bb_conf) + # inst.reader['pred'] = pred_reader # 这里创建的reader是个假reader,只是为了读取output_attr而已,所以不做保存 + inst.task_layer['pred'] = pred_parad + # 框架有巨坑,先这样写吧 + task_attr_from_reader = _encode_inputs(pred_parad.inputs_attrs['reader'], inst.name) + pred_task_attrs.append(task_attr_from_reader) + # task_attr = pred_parad.inputs_attrs['reader'] + _check_io(pred_backbone.inputs_attr, pred_reader.outputs_attr, in_name=bb_name+'_backbone', out_name='reader.pred') + _check_io(pred_parad.inputs_attrs['reader'], pred_reader.outputs_attr, in_name='task_paradigm.pred.reader', out_name='reader.pred') + _check_io(pred_parad.inputs_attrs['backbone'], pred_backbone.outputs_attr, in_name='task_paradigm.pred.backbone', out_name=bb_name+'_backbone') + + # merge reader input attrs from backbone and task_instances + joint_input_names, joint_shape_and_dtypes, name_to_position = merge_input_attrs(train_backbone.inputs_attr, task_attrs) + pred_joint_input_names, pred_joint_shape_and_dtypes, _ = merge_input_attrs(pred_backbone.inputs_attr, pred_task_attrs, insert_taskid=False) + # shapes: [task_id, shapes_of_backbone, shapes_of_inst1, ..., shapes_of_instN] + + if DEBUG: + print('----- for debug -----') + print('joint input names:') + print(joint_input_names) + print('joint input shape and dtypes:') + print(joint_shape_and_dtypes) + + # load data + for inst in instances: + print(inst.name+": preparing data...") + inst.reader['train'].load_data() + + # merge dataset iterators and create net input vars + iterators = [] + prefixes = [] + mrs = [] + for inst in instances: + iterators.append(inst.reader['train'].iterator()) + prefixes.append(inst.name) + mrs.append(inst.mix_ratio) + + joint_iterator_fn = create_joint_iterator_fn(iterators, prefixes, joint_shape_and_dtypes, mrs, name_to_position, dev_count=dev_count, verbose=VERBOSE, batch_size=main_conf['batch_size']) + + input_attrs = [[i, j, k] for i, (j,k) in zip(joint_input_names, joint_shape_and_dtypes)] + pred_input_attrs = [[i, j, k] for i, (j,k) in zip(pred_joint_input_names, pred_joint_shape_and_dtypes)] + net_inputs = create_net_inputs(input_attrs, async=True, iterator_fn=joint_iterator_fn, dev_count=dev_count, n_prefetch=3) + + # build backbone and task layers + # 不指定scope名字会挂,框架有坑 + with fluid.unique_name.guard("backbone-"): + bb_output_vars = train_backbone.build(net_inputs) + # bb_output_vars = train_backbone.build(net_inputs) + assert sorted(bb_output_vars.keys()) == sorted(train_backbone.outputs_attr.keys()) + + # 会挂 + # 这里是否有必要新建一个program?是的,被坑死了 + pred_prog = fluid.Program() + pred_init_prog = fluid.Program() + + train_prog = fluid.default_main_program() + train_init_prog = fluid.default_startup_program() + + with fluid.program_guard(main_program = pred_prog, startup_program = pred_init_prog): + pred_net_inputs = create_net_inputs(pred_input_attrs) + with fluid.unique_name.guard("backbone-"): + pred_bb_output_vars = pred_backbone.build(pred_net_inputs) + + fluid.framework.switch_main_program(train_prog) + fluid.framework.switch_startup_program(train_init_prog) + + # pred_backbone = train_backbone + # pred_bb_output_vars = bb_output_vars + + task_output_vars = {} + for inst in instances: + task_inputs = {'backbone': bb_output_vars} + task_inputs_from_reader = _decode_inputs(net_inputs, inst.name) + task_inputs['reader'] = task_inputs_from_reader + + scope = inst.task_reuse_scope + '/' + with fluid.unique_name.guard(scope): + output_vars = inst.build_task_layer(task_inputs, phase='train') + output_vars = {inst.name+'/'+key: val for key, val in output_vars.items()} + old = len(task_output_vars) # for debug + task_output_vars.update(output_vars) + assert len(task_output_vars) - old == len(output_vars) # for debug + + # # prepare predict vars for saving inference model + if inst.is_target: + + # task_attr = inst.task_layer['pred'].inputs_attrs['reader'] + # _input_names, _shape_and_dtypes, _ = merge_input_attrs(pred_backbone.inputs_attr, task_attr, insert_taskid=False) + # pred_input_attrs = [[i, j, k] for i, (j,k) in zip(_input_names, _shape_and_dtypes)] + + with fluid.program_guard(pred_prog, pred_init_prog): + # pred_net_inputs = create_net_inputs(pred_input_attrs) + # 这里同时建立了pred阶段的backbone计算图,不知道是否会造成额外的显存开销(paddle不会计算运行路径) + cur_inputs = _decode_inputs(pred_net_inputs, inst.name) + inst.pred_input = cur_inputs + pred_task_inputs = {'backbone': pred_bb_output_vars, 'reader': cur_inputs} + scope = inst.task_reuse_scope + '/' + with fluid.unique_name.guard(scope): + inst.build_task_layer(pred_task_inputs, phase='pred') + + + bb_fetches = {k: v.name for k,v in bb_output_vars.items()} + task_fetches = {k: v.name for k,v in task_output_vars.items()} + # fetches = bb_fetches.copy() # 注意!框架在多卡时无法fetch变长维度的tensor,这里加入bb的out后会挂 + # fetches.update(task_fetches) + fetches = task_fetches + fetches['__task_id'] = net_inputs['__task_id'].name + + # compute loss + task_id_var = net_inputs['__task_id'] + task_id_vec = layers.one_hot(task_id_var, num_instances) + losses = fluid.layers.concat([task_output_vars[inst.name+'/loss'] for inst in instances], axis=0) + loss = layers.reduce_sum(task_id_vec * losses) + + main_reader = main_inst.reader['train'] + + num_examples = main_reader.num_examples + for inst in instances: + max_train_steps = int(main_conf['num_epochs']* inst.mix_ratio * num_examples) // main_conf['batch_size'] // dev_count + if inst.is_target: + print('{}: expected train steps {}.'.format(inst.name, max_train_steps)) + inst.steps_pur_epoch = inst.reader['train'].num_examples // main_conf['batch_size'] // dev_count + inst.expected_train_steps = max_train_steps + + global_max_train_steps = int(main_conf['num_epochs'] * num_examples * sum(mrs)) // main_conf['batch_size'] // dev_count + print('Estimated overall train steps {}.'.format(global_max_train_steps)) + + if 'warmup_proportion' in main_conf and main_conf['warmup_proportion'] > 0: + warmup_steps = int(global_max_train_steps * main_conf['warmup_proportion']) + print('Warmup steps: '+str(warmup_steps)) + else: + warmup_steps = 0 + # steps_pur_epoch = num_examples // main_conf['batch_size'] // dev_count + + # build optimizer + # 其实也完全可以支持每个任务用它自己的optimizer + if 'optimizer' in main_conf: + optim_mod = importlib.import_module(OPTIMIZER_DIR + '.' + main_conf['optimizer']) + optimize = getattr(optim_mod, OPTIMIZE_METHOD) + optimize(loss, main_conf, max_train_steps, warmup_steps, fluid.default_main_program()) + + loss.persistable = True + if main_conf.get('use_ema', False): + assert 'ema_decay' in main_conf, "ema_decay should be set when use_ema is enabled." + ema = fluid.optimizer.ExponentialMovingAverage(main_conf['ema_decay']) + ema.update() + + # prepare for train + self.train_backbone = train_backbone + self.train_program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name) + self.saver_program = fluid.default_main_program() + + self.main_inst = main_inst + self.fetches = fetches + self.has_init_train = True + self.has_init_pred = True + # self.max_train_steps = max_train_steps + # self.steps_pur_epoch = steps_pur_epoch + + self.exe.run(fluid.default_startup_program()) + print("\nRandomly initialize parameters...\n") + + def _init_pred(self, instance, infer_model_path): + inst = instance + + pred_backbone = self.Backbone(self.bb_conf, phase='pred') + pred_parad = inst.Paradigm(inst.config, phase='pred', backbone_config=self.bb_conf) + inst.task_layer['pred'] = pred_parad + pred_joint_input_names, pred_joint_shape_and_dtypes, name_to_position = merge_input_attrs( + pred_backbone.inputs_attr, inst.task_layer['pred'].inputs_attrs['reader'], + insert_taskid=False) + + pred_prog = inst.load(infer_model_path) + # pred_prog = fluid.CompiledProgram(pred_prog).with_data_parallel() + if inst.reader['pred'] is None: + pred_reader = inst.Reader(inst.config, phase='pred') + inst.reader['pred'] = pred_reader + return pred_prog + + def load_pretrain(self, pretrain_model_path=None): + # load pretrain model (or ckpt) + if pretrain_model_path is None: + assert 'pretrain_model_path' in self.main_conf, "pretrain_model_path NOT set." + pretrain_model_path = self.main_conf['pretrain_model_path'] + + init_pretraining_params( + self.exe, + pretrain_model_path, + main_program=fluid.default_startup_program()) + + + def train(self): + # TODO: 备份各种配置文件,以便用户断点重新训练以及支持将来的预测 + + if not self.has_init_train: + self._init_train() + self.has_init_train = True + + instances = self.instances + num_instances = self.num_instances + main_inst = self.main_inst + main_conf = main_inst.config + + backbone = self.train_backbone + train_program = self.train_program + saver_program = self.saver_program + fetches = self.fetches + + # max_train_steps = self.max_train_steps + # steps_pur_epoch = self.steps_pur_epoch + + finish = [] + for inst in instances: + if inst.is_target: + finish.append(False) + + def train_finish(): + for inst in instances: + if inst.is_target: + if not inst.train_finish: + return False + return True + + # do training + # loss_fetches = {inst.name+'/loss': inst.task_layer['train'].loss for inst in instances} + # old = len(fetches) # for debug + # fetches.update(loss_fetches) + # assert len(fetches) == old + len(loss_fetches) # for debug and avoid user-caused bug + # assert 'task_id' not in fetches # for debug and avoid user-caused bug + # fetches['task_id'] = task_id_var + fetch_names, fetch_list = zip(*fetches.items()) + + main_step = 0 # only count for main task + global_step = 0 # count for all tasks + epoch = 0 + time_begin = time.time() + backbone_buffer = [] + while not train_finish(): + rt_outputs = self.exe.run(train_program, fetch_list=fetch_list) + rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)} + rt_task_id = np.squeeze(rt_outputs['__task_id']).tolist() + assert (not isinstance(rt_task_id, list)) or len(set(rt_task_id)) == 1, rt_task_id + rt_task_id = rt_task_id[0] if isinstance(rt_task_id, list) else rt_task_id + cur_task = instances[rt_task_id] + + backbone_rt_outputs = {k:v for k,v in rt_outputs.items() if '/' not in k} + backbone_buffer.append(backbone.postprocess(backbone_rt_outputs)) + + task_rt_outputs = {k[len(cur_task.name+'/'):]: v for k,v in rt_outputs.items() if k.startswith(cur_task.name+'/')} + instances[rt_task_id].task_layer['train'].postprocess(task_rt_outputs) + + global_step += 1 + # if cur_task.is_target: + cur_task.cur_train_step += 1 + + if global_step % main_conf.get('print_every_n_steps', 5) == 0: + loss = rt_outputs[cur_task.name+'/loss'] + loss = np.mean(np.squeeze(loss)).tolist() + + time_end = time.time() + time_cost = time_end - time_begin + + print("Global step: {}. Task: {}, step {}/{} (epoch {}), loss: {:.3f}, speed: {:.2f} steps/s".format( + global_step, cur_task.name, cur_task.cur_train_step, cur_task.steps_pur_epoch, cur_task.cur_train_epoch, + loss, main_conf.get('print_every_n_steps', 5) / time_cost)) + time_begin = time.time() + + if 'save_every_n_steps' in main_conf and global_step % main_conf['save_every_n_steps'] == 0: + save_path = os.path.join(main_conf['save_path'], + "step_" + str(global_step)) + fluid.io.save_persistables(self.exe, save_path, saver_program) + + save_path = os.path.join(main_conf['save_path'], + "step_" + str(global_step) + "_final") + fluid.io.save_persistables(self.exe, save_path, saver_program) + + def pred(self, task_instance, inference_model_dir=None): + if self._for_train: + raise Exception('This controller is a trainer. Please build a new controller with for_train=False for predicting.') + + assert isinstance(task_instance, str) + if isinstance(inference_model_dir, str): + assert os.path.exists(inference_model_dir), inference_model_dir+" not found." + if not self.has_init_pred and inference_model_dir is None: + raise ValueError('infer_model_path is required for prediction.') + + instance = None + for inst in self.instances: + if inst.name == task_instance: + instance = inst + break + + if instance is None: + raise ValueError(task_instance + ' is not a valid task_instance.') + + pred_prog = self._init_pred(instance, inference_model_dir) + + inst = instance + inst.reader['pred'].load_data() + fetch_names, fetch_vars = inst.pred_fetch_list + + # iterator = create_iterator_fn(inst.reader['pred'].iterator, inst.name, pred_joint_shape_and_dtypes, name_to_position) + mapper = {k:v for k,v in inst.pred_input} + buf = [] + for feed in inst.reader['pred'].iterator(): + feed = _encode_inputs(feed, inst.name, cand_set=mapper) + feed = {mapper[k]: v for k,v in feed.items()} + + rt_outputs = self.exe.run(pred_prog, feed, fetch_vars) + rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)} + inst.postprocess(rt_outputs, phase='pred') + reader_outputs = inst.reader['pred'].get_epoch_outputs() + inst.epoch_postprocess({'reader':reader_outputs}, phase='pred') + + + + +if __name__ == '__main__': + assert len(sys.argv) == 2, "Usage: python mtl_controller.py " + conf_path = sys.argv[1] + del sys.argv[1] + controller = Controller(conf_path) + if controller.main_conf['do_train']: + controller.train() + + + + + + diff --git a/build/lib/paddlepalm/optimizer/__init__.py b/build/lib/paddlepalm/optimizer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/optimizer/adam.py b/build/lib/paddlepalm/optimizer/adam.py new file mode 100644 index 0000000000000000000000000000000000000000..74a02463e96e3749537a58f3b7e411ec54f563cf --- /dev/null +++ b/build/lib/paddlepalm/optimizer/adam.py @@ -0,0 +1,108 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Optimization and learning rate scheduling.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import paddle.fluid as fluid + +def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps): + """ Applies linear warmup of learning rate from 0 and decay to 0.""" + with fluid.default_main_program()._lr_schedule_guard(): + lr = fluid.layers.tensor.create_global_var( + shape=[1], + value=0.0, + dtype='float32', + persistable=True, + name="scheduled_learning_rate") + + global_step = fluid.layers.learning_rate_scheduler._decay_step_counter() + + with fluid.layers.control_flow.Switch() as switch: + with switch.case(global_step < warmup_steps): + warmup_lr = learning_rate * (global_step / warmup_steps) + fluid.layers.tensor.assign(warmup_lr, lr) + with switch.default(): + decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay( + learning_rate=learning_rate, + decay_steps=num_train_steps, + end_learning_rate=0.0, + power=1.0, + cycle=False) + fluid.layers.tensor.assign(decayed_lr, lr) + + return lr + + +def optimize(loss, config, max_train_steps=None, warmup_steps=0, train_program=None): + if warmup_steps > 0: + decay_strategy = config.get('lr_scheduler', 'linear_warmup_decay') + if decay_strategy == 'noam_decay': + scheduled_lr = fluid.layers.learning_rate_scheduler\ + .noam_decay(1/(warmup_steps *(config['learning_rate'] ** 2)), + warmup_steps) + elif decay_strategy == 'linear_warmup_decay': + scheduled_lr = linear_warmup_decay(config['learning_rate'], warmup_steps, + max_train_steps) + else: + raise ValueError("Unkown lr_scheduler, should be " + "'noam_decay' or 'linear_warmup_decay'") + optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr) + else: + optimizer = fluid.optimizer.Adam(learning_rate=config['learning_rate']) + scheduled_lr = config['learning_rate'] + + clip_norm_thres = 1.0 + # When using mixed precision training, scale the gradient clip threshold + # by loss_scaling + fluid.clip.set_gradient_clip( + clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=clip_norm_thres)) + + def exclude_from_weight_decay(name): + if name.find("layer_norm") > -1: + return True + bias_suffix = ["_bias", "_b", ".b_0"] + for suffix in bias_suffix: + if name.endswith(suffix): + return True + return False + + param_list = dict() + + for param in train_program.global_block().all_parameters(): + param_list[param.name] = param * 1.0 + param_list[param.name].stop_gradient = True + + _, param_grads = optimizer.minimize(loss) + + for block in fluid.default_main_program().blocks: + for var_name in block.vars: + if var_name.startswith("embedding"): + print(block.vars[var_name]) + + + if config.get('weight_decay', 0) > 0: + for param, grad in param_grads: + if exclude_from_weight_decay(param.name): + continue + with param.block.program._optimized_guard( + [param, grad]), fluid.framework.name_scope("weight_decay"): + updated_param = param - param_list[ + param.name] * config['weight_decay'] * scheduled_lr + fluid.layers.assign(output=param, input=updated_param) + diff --git a/build/lib/paddlepalm/reader/__init__.py b/build/lib/paddlepalm/reader/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/reader/cls4bert.py b/build/lib/paddlepalm/reader/cls4bert.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/reader/match4ernie.py b/build/lib/paddlepalm/reader/match4ernie.py new file mode 100644 index 0000000000000000000000000000000000000000..0ef8fdebcccfac7cd539a3570f301ea20dc5a005 --- /dev/null +++ b/build/lib/paddlepalm/reader/match4ernie.py @@ -0,0 +1,103 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddlepalm.interface import reader +from paddlepalm.reader.utils.reader4ernie import ClassifyReader + +class Reader(reader): + + def __init__(self, config, phase='train', dev_count=1, print_prefix=''): + """ + Args: + phase: train, eval, pred + """ + + self._is_training = phase == 'train' + + reader = ClassifyReader(config['vocab_path'], + max_seq_len=config['max_seq_len'], + do_lower_case=config.get('do_lower_case', False), + for_cn=config.get('for_cn', False), + random_seed=config.get('seed', None)) + self._reader = reader + self._dev_count = dev_count + + self._batch_size = config['batch_size'] + self._max_seq_len = config['max_seq_len'] + if phase == 'train': + self._input_file = config['train_file'] + self._num_epochs = None # 防止iteartor终止 + self._shuffle = config.get('shuffle', False) + self._shuffle_buffer = config.get('shuffle_buffer', 5000) + elif phase == 'eval': + self._input_file = config['dev_file'] + self._num_epochs = 1 + self._shuffle = False + self._batch_size = config.get('pred_batch_size', self._batch_size) + elif phase == 'pred': + self._input_file = config['pred_file'] + self._num_epochs = 1 + self._shuffle = False + self._batch_size = config.get('pred_batch_size', self._batch_size) + + self._phase = phase + # self._batch_size = + self._print_first_n = config.get('print_first_n', 1) + + + @property + def outputs_attr(self): + if self._is_training: + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'], + "label_ids": [[-1,1], 'int64'], + "task_ids": [[-1, -1, 1], 'int64'] + } + else: + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "task_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'] + } + + + def load_data(self): + self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) + + def iterator(self): + + def list_to_dict(x): + names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', + 'label_ids', 'unique_ids'] + outputs = {n: i for n,i in zip(names, x)} + del outputs['unique_ids'] + if not self._is_training: + del outputs['label_ids'] + return outputs + + for batch in self._data_generator(): + yield list_to_dict(batch) + + def get_epoch_outputs(self): + return {'examples': self._reader.get_examples(self._phase), + 'features': self._reader.get_features(self._phase)} + + @property + def num_examples(self): + return self._reader.get_num_examples(phase=self._phase) + diff --git a/build/lib/paddlepalm/reader/mlm.py b/build/lib/paddlepalm/reader/mlm.py new file mode 100644 index 0000000000000000000000000000000000000000..823e5058258d8de2703ccdbe8ab41997722b39d3 --- /dev/null +++ b/build/lib/paddlepalm/reader/mlm.py @@ -0,0 +1,103 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddlepalm.interface import reader +from paddlepalm.reader.utils.reader4ernie import BaseReader + +class Reader(reader): + + def __init__(self, config, phase='train', dev_count=1, print_prefix=''): + """ + Args: + phase: train, eval, pred + """ + + self._is_training = phase == 'train' + + reader = ClassifyReader(config['vocab_path'], + max_seq_len=config['max_seq_len'], + do_lower_case=config.get('do_lower_case', False), + for_cn=config.get('for_cn', False), + random_seed=config.get('seed', None)) + self._reader = reader + self._dev_count = dev_count + + self._batch_size = config['batch_size'] + self._max_seq_len = config['max_seq_len'] + if phase == 'train': + self._input_file = config['train_file'] + self._num_epochs = None # 防止iteartor终止 + self._shuffle = config.get('shuffle', False) + self._shuffle_buffer = config.get('shuffle_buffer', 5000) + elif phase == 'eval': + self._input_file = config['dev_file'] + self._num_epochs = 1 + self._shuffle = False + self._batch_size = config.get('pred_batch_size', self._batch_size) + elif phase == 'pred': + self._input_file = config['pred_file'] + self._num_epochs = 1 + self._shuffle = False + self._batch_size = config.get('pred_batch_size', self._batch_size) + + self._phase = phase + # self._batch_size = + self._print_first_n = config.get('print_first_n', 1) + + + @property + def outputs_attr(self): + if self._is_training: + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'], + "label_ids": [[-1,1], 'int64'], + "task_ids": [[-1, -1, 1], 'int64'] + } + else: + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "task_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'] + } + + + def load_data(self): + self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) + + def iterator(self): + + def list_to_dict(x): + names = ['token_ids', 'position_ids', 'segment_ids', 'input_mask', + 'task_ids', 'mask_label', 'mask_pos'] + outputs = {n: i for n,i in zip(names, x)} + del outputs['unique_ids'] + if not self._is_training: + del outputs['label_ids'] + return outputs + + for batch in self._data_generator(): + yield list_to_dict(batch) + + def get_epoch_outputs(self): + return {'examples': self._reader.get_examples(self._phase), + 'features': self._reader.get_features(self._phase)} + + @property + def num_examples(self): + return self._reader.get_num_examples(phase=self._phase) + diff --git a/build/lib/paddlepalm/reader/mrc4bert.py b/build/lib/paddlepalm/reader/mrc4bert.py new file mode 100644 index 0000000000000000000000000000000000000000..ebf9aed9bd7902cfadcf47ecd8c15e26c2071539 --- /dev/null +++ b/build/lib/paddlepalm/reader/mrc4bert.py @@ -0,0 +1,656 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from paddlepalm.interface import reader +from paddlepalm.utils.textprocess_helper import is_whitespace +from paddlepalm.reader.utils.mrqa_helper import MRQAExample, MRQAFeature +import paddlepalm.tokenizer.bert_tokenizer as tokenization + +class Reader(reader): + + def __init__(self, config, phase='train', dev_count=1, print_prefix=''): + """ + Args: + phase: train, eval, pred + """ + + self._is_training = phase == 'train' + + self._tokenizer = tokenization.FullTokenizer( + vocab_file=config['vocab_path'], do_lower_case=config.get('do_lower_case', False)) + self._max_seq_length = config['max_seq_len'] + self._doc_stride = config['doc_stride'] + self._max_query_length = config['max_query_len'] + + if phase == 'train': + self._input_file = config['train_file'] + self._num_epochs = config['num_epochs'] + self._shuffle = config.get('shuffle', False) + self._shuffle_buffer = config.get('shuffle_buffer', 5000) + if phase == 'eval': + self._input_file = config['dev_file'] + self._num_epochs = 1 + self._shuffle = False + elif phase == 'pred': + self._input_file = config['predict_file'] + self._num_epochs = 1 + self._shuffle = False + + # self._batch_size = + self._batch_size = config['batch_size'] + self._pred_batch_size = config.get('pred_batch_size', self._batch_size) + self._print_first_n = config.get('print_first_n', 1) + self._with_negative = config.get('with_negative', False) + self._sample_rate = config.get('sample_rate', 0.02) + + # TODO: without slide window version + self._with_slide_window = config.get('with_slide_window', False) + + self.vocab = self._tokenizer.vocab + self.vocab_size = len(self.vocab) + self.pad_id = self.vocab["[PAD]"] + self.cls_id = self.vocab["[CLS]"] + self.sep_id = self.vocab["[SEP]"] + self.mask_id = self.vocab["[MASK]"] + + self.current_train_example = -1 + self.num_train_examples = -1 + self.current_train_epoch = -1 + + self.n_examples = None + + print(print_prefix + 'reading raw data...') + with open(input_file, "r") as reader: + self.raw_data = json.load(reader)["data"] + print(print_prfix + 'done!') + + @property + def outputs_attr(self): + if self._is_training: + return {"token_ids": [[-1, self.max_seq_len, 1], 'int64'], + "position_ids": [[-1, self.max_seq_len, 1], 'int64'], + "segment_ids": [[-1, self.max_seq_len, 1], 'int64'], + "input_mask": [[-1, self.max_seq_len, 1], 'float32'], + "start_positions": [[-1, self.max_seq_len, 1], 'int64'], + "end_positions": [[-1, self.max_seq_len, 1], 'int64'] + } + else: + return {"token_ids": [[-1, self.max_seq_len, 1], 'int64'], + "position_ids": [[-1, self.max_seq_len, 1], 'int64'], + "segment_ids": [[-1, self.max_seq_len, 1], 'int64'], + "input_mask": [[-1, self.max_seq_len, 1], 'float32'], + "unique_ids": [[-1, 1], 'int64'] + } + + def iterator(self): + + features = [] + for i in self._num_epochs: + if self._is_training: + print(self.print_prefix + '{} epoch {} {}'.format('-'*16, i, '-'*16)) + example_id = 0 + feature_id = 1000000000 + for line in self.train_file: + raw = self.parse_line(line) + + examples = _raw_to_examples(raw['context'], raw['qa_list'], is_training=self._is_training) + for example in examples: + features.extend(_example_to_features(example, example_id, self._tokenizer, \ + self._max_seq_length, self._doc_stride, self._max_query_length, \ + id_offset=1000000000+len(features), is_training=self._is_training)) + if len(features) >= self._batch_size * self._dev_count: + for batch, total_token_num in _features_to_batches( \ + features[:self._batch_size * self._dev_count], \ + batch_size, in_tokens=self._in_tokens): + temp = prepare_batch_data(batch, total_token_num, \ + max_len=self._max_seq_length, voc_size=-1, \ + pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=-1, \ + return_input_mask=True, return_max_len=False, return_num_token=False) + if self._is_training: + tok_ids, pos_ids, seg_ids, input_mask, start_positions, end_positions = temp + yield {"token_ids": tok_ids, "position_ids": pos_ids, "segment_ids": seg_ids, "input_mask": input_mask, "start_positions": start_positions, 'end_positions': end_positions} + else: + tok_ids, pos_ids, seg_ids, input_mask, unique_ids = temp + yield {"token_ids": tok_ids, "position_ids": pos_ids, "segment_ids": seg_ids, "input_mask": input_mask, "unique_ids": unique_ids} + + features = features[self._batch_size * self._dev_count:] + example_id += 1 + + # The last batch may be discarded when running with distributed prediction, so we build some fake batches for the last prediction step. + if self._is_training and len(features) > 0: + pred_batches = [] + for batch, total_token_num in _features_to_batches( \ + features[:self._batch_size * self._dev_count], \ + batch_size, in_tokens=self._in_tokens): + pred_batches.append(prepare_batch_data(batch, total_token_num, max_len=self._max_seq_length, voc_size=-1, + pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=-1, \ + return_input_mask=True, return_max_len=False, return_num_token=False)) + + fake_batch = pred_batches[-1] + fake_batch = fake_batch[:-1] + [np.array([-1]*len(fake_batch[0]))] + pred_batches = pred_batches + [fake_batch] * (dev_count - len(pred_batches)) + for batch in pred_batches: + yield batch + + @property + def num_examples(self): + if self.n_examples is None: + self.n_examples = _estimate_runtime_examples(self.raw_data, self._sample_rate, self._tokenizer, \ + self._max_seq_length, self._doc_stride, self._max_query_length, \ + remove_impossible_questions=True, filter_invalid_spans=True) + return self.n_examples + # return math.ceil(n_examples * self._num_epochs / float(self._batch_size * self._dev_count)) + + + +def _raw_to_examples(context, qa_list, is_training=True, remove_impossible_questions=True, filter_invalid_spans=True): + """ + Args: + context: (str) the paragraph that provide information for QA + qa_list: (list) nested dict. Each element in qa_list should contain at least 'id' and 'question'. And the .... + """ + examples = [] + doc_tokens = [] + char_to_word_offset = [] + prev_is_whitespace = True + for c in context: + if is_whitespace(c): + prev_is_whitespace = True + else: + if prev_is_whitespace: + doc_tokens.append(c) + else: + doc_tokens[-1] += c + prev_is_whitespace = False + char_to_word_offset.append(len(doc_tokens) - 1) + + for qa in qa_list: + qas_id = qa["id"] + question_text = qa["question"] + start_position = None + end_position = None + orig_answer_text = None + is_impossible = False + if is_training: + + assert len(qa["answers"]) == 1, "For training, each question should have exactly 1 answer." + + if ('is_impossible' in qa) and (qa["is_impossible"]): + if remove_impossible_questions or filter_invalid_spans: + continue + else: + start_position = -1 + end_position = -1 + orig_answer_text = "" + is_impossible = True + else: + answer = qa["answers"][0] + orig_answer_text = answer["text"] + answer_offset = answer["answer_start"] + answer_length = len(orig_answer_text) + start_position = char_to_word_offset[answer_offset] + end_position = char_to_word_offset[answer_offset + + answer_length - 1] + + # remove corrupt samples + actual_text = " ".join(doc_tokens[start_position:( + end_position + 1)]) + cleaned_answer_text = " ".join( + tokenization.whitespace_tokenize(orig_answer_text)) + if actual_text.find(cleaned_answer_text) == -1: + print(self.print_prefix + "Could not find answer: '%s' vs. '%s'", + actual_text, cleaned_answer_text) + continue + + examples.append(MRQAExample( + qas_id=qas_id, + question_text=question_text, + doc_tokens=doc_tokens, + orig_answer_text=orig_answer_text, + start_position=start_position, + end_position=end_position, + is_impossible=is_impossible)) + + return examples + + + + +def _example_to_features(example, example_id, tokenizer, max_seq_length, doc_stride, max_query_length, id_offset, is_training): + + query_tokens = tokenizer.tokenize(example.question_text) + + if len(query_tokens) > max_query_length: + query_tokens = query_tokens[0:max_query_length] + + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + tok_start_position = None + tok_end_position = None + if is_training and example.is_impossible: + tok_start_position = -1 + tok_end_position = -1 + if is_training and not example.is_impossible: + tok_start_position = orig_to_tok_index[example.start_position] + if example.end_position < len(example.doc_tokens) - 1: + tok_end_position = orig_to_tok_index[example.end_position + + 1] - 1 + else: + tok_end_position = len(all_doc_tokens) - 1 + (tok_start_position, tok_end_position) = _improve_answer_span( + all_doc_tokens, tok_start_position, tok_end_position, tokenizer, + example.orig_answer_text) + + # The -3 accounts for [CLS], [SEP] and [SEP] + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + + # We can have documents that are longer than the maximum sequence length. + # To deal with this we do a sliding window approach, where we take chunks + # of the up to our max length with a stride of `doc_stride`. + _DocSpan = collections.namedtuple( # pylint: disable=invalid-name + "DocSpan", ["start", "length"]) + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(_DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + tokens = [] + token_to_orig_map = {} + token_is_max_context = {} + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in query_tokens: + tokens.append(token) + segment_ids.append(0) + tokens.append("[SEP]") + segment_ids.append(0) + + for i in range(doc_span.length): + split_token_index = doc_span.start + i + token_to_orig_map[len(tokens)] = tok_to_orig_index[ + split_token_index] + + is_max_context = _check_is_max_context( + doc_spans, doc_span_index, split_token_index) + token_is_max_context[len(tokens)] = is_max_context + tokens.append(all_doc_tokens[split_token_index]) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + #while len(input_ids) < max_seq_length: + # input_ids.append(0) + # input_mask.append(0) + # segment_ids.append(0) + + #assert len(input_ids) == max_seq_length + #assert len(input_mask) == max_seq_length + #assert len(segment_ids) == max_seq_length + + start_position = None + end_position = None + if is_training and not example.is_impossible: + # For training, if our document chunk does not contain an annotation + # we throw it out, since there is nothing to predict. + doc_start = doc_span.start + doc_end = doc_span.start + doc_span.length - 1 + out_of_span = False + if not (tok_start_position >= doc_start and + tok_end_position <= doc_end): + out_of_span = True + if out_of_span: + start_position = 0 + end_position = 0 + continue + else: + doc_offset = len(query_tokens) + 2 + start_position = tok_start_position - doc_start + doc_offset + end_position = tok_end_position - doc_start + doc_offset + + if is_training and example.is_impossible: + start_position = 0 + end_position = 0 + + def format_print(): + print("*** Example ***") + print("unique_id: %s" % (unique_id)) + print("example_index: %s" % (example_index)) + print("doc_span_index: %s" % (doc_span_index)) + print("tokens: %s" % " ".join( + [tokenization.printable_text(x) for x in tokens])) + print("token_to_orig_map: %s" % " ".join([ + "%d:%d" % (x, y) + for (x, y) in six.iteritems(token_to_orig_map) + ])) + print("token_is_max_context: %s" % " ".join([ + "%d:%s" % (x, y) + for (x, y) in six.iteritems(token_is_max_context) + ])) + print("input_ids: %s" % " ".join([str(x) for x in input_ids])) + print("input_mask: %s" % " ".join([str(x) for x in input_mask])) + print("segment_ids: %s" % + " ".join([str(x) for x in segment_ids])) + if is_training and example.is_impossible: + print("impossible example") + if is_training and not example.is_impossible: + answer_text = " ".join(tokens[start_position:(end_position + + 1)]) + print("start_position: %d" % (start_position)) + print("end_position: %d" % (end_position)) + print("answer: %s" % + (tokenization.printable_text(answer_text))) + + if self._print_first_n > 0: + format_print() + self._print_first_n -= 1 + + features.append(MRQAFeature( + unique_id=id_offset, + example_index=example_id, + doc_span_index=doc_span_index, + tokens=tokens, + token_to_orig_map=token_to_orig_map, + token_is_max_context=token_is_max_context, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + start_position=start_position, + end_position=end_position, + is_impossible=example.is_impossible)) + + id_offset += 1 + + return features + + +def _features_to_batches(features, batch_size, in_tokens): + batch, total_token_num, max_len = [], 0, 0 + for (index, feature) in enumerate(features): + if phase == 'train': + self.current_train_example = index + 1 + seq_len = len(feature.input_ids) + labels = [feature.unique_id + ] if feature.start_position is None else [ + feature.start_position, feature.end_position + ] + example = [ + feature.input_ids, feature.segment_ids, range(seq_len) + ] + labels + max_len = max(max_len, seq_len) + + if in_tokens: + to_append = (len(batch) + 1) * max_len <= batch_size + else: + to_append = len(batch) < batch_size + + if to_append: + batch.append(example) + total_token_num += seq_len + else: + yield batch, total_token_num + batch, total_token_num, max_len = [example + ], seq_len, seq_len + if len(batch) > 0: + yield batch, total_token_num + + +def _estimate_runtime_examples(data, sample_rate, tokenizer, \ + max_seq_length, doc_stride, max_query_length, \ + remove_impossible_questions=True, filter_invalid_spans=True): + """Count runtime examples which may differ from number of raw samples due to sliding window operation and etc.. + This is useful to get correct warmup steps for training.""" + + assert sample_rate > 0.0 and sample_rate <= 1.0, "sample_rate must be set between 0.0~1.0" + + num_raw_examples = 0 + for entry in data: + for paragraph in entry["paragraphs"]: + paragraph_text = paragraph["context"] + for qa in paragraph["qas"]: + num_raw_examples += 1 + # print("num raw examples:{}".format(num_raw_examples)) + + def is_whitespace(c): + if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: + return True + return False + + sampled_examples = [] + first_samp = True + for entry in data: + for paragraph in entry["paragraphs"]: + doc_tokens = None + for qa in paragraph["qas"]: + if not first_samp and random.random() > sample_rate and sample_rate < 1.0: + continue + + if doc_tokens is None: + paragraph_text = paragraph["context"] + doc_tokens = [] + char_to_word_offset = [] + prev_is_whitespace = True + for c in paragraph_text: + if is_whitespace(c): + prev_is_whitespace = True + else: + if prev_is_whitespace: + doc_tokens.append(c) + else: + doc_tokens[-1] += c + prev_is_whitespace = False + char_to_word_offset.append(len(doc_tokens) - 1) + + assert len(qa["answers"]) == 1, "For training, each question should have exactly 1 answer." + + qas_id = qa["id"] + question_text = qa["question"] + start_position = None + end_position = None + orig_answer_text = None + is_impossible = False + + if ('is_impossible' in qa) and (qa["is_impossible"]): + if remove_impossible_questions or filter_invalid_spans: + continue + else: + start_position = -1 + end_position = -1 + orig_answer_text = "" + is_impossible = True + else: + answer = qa["answers"][0] + orig_answer_text = answer["text"] + answer_offset = answer["answer_start"] + answer_length = len(orig_answer_text) + start_position = char_to_word_offset[answer_offset] + end_position = char_to_word_offset[answer_offset + + answer_length - 1] + + # remove corrupt samples + actual_text = " ".join(doc_tokens[start_position:( + end_position + 1)]) + cleaned_answer_text = " ".join( + tokenization.whitespace_tokenize(orig_answer_text)) + if actual_text.find(cleaned_answer_text) == -1: + continue + + example = MRQAExample( + qas_id=qas_id, + question_text=question_text, + doc_tokens=doc_tokens, + orig_answer_text=orig_answer_text, + start_position=start_position, + end_position=end_position, + is_impossible=is_impossible) + + sampled_examples.append(example) + first_samp = False + + + runtime_sample_rate = len(sampled_examples) / float(num_raw_examples) + + runtime_samp_cnt = 0 + + for example in sampled_examples: + query_tokens = tokenizer.tokenize(example.question_text) + + if len(query_tokens) > max_query_length: + query_tokens = query_tokens[0:max_query_length] + + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + tok_start_position = None + tok_end_position = None + + tok_start_position = orig_to_tok_index[example.start_position] + if example.end_position < len(example.doc_tokens) - 1: + tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 + else: + tok_end_position = len(all_doc_tokens) - 1 + (tok_start_position, tok_end_position) = _improve_answer_span( + all_doc_tokens, tok_start_position, tok_end_position, tokenizer, + example.orig_answer_text) + + # The -3 accounts for [CLS], [SEP] and [SEP] + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + + _DocSpan = collections.namedtuple( # pylint: disable=invalid-name + "DocSpan", ["start", "length"]) + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(_DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + doc_start = doc_span.start + doc_end = doc_span.start + doc_span.length - 1 + if filter_invalid_spans and not (tok_start_position >= doc_start and tok_end_position <= doc_end): + continue + runtime_samp_cnt += 1 + return int(runtime_samp_cnt/runtime_sample_rate) + + +def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, + orig_answer_text): + """Returns tokenized answer spans that better match the annotated answer.""" + + # The MRQA annotations are character based. We first project them to + # whitespace-tokenized words. But then after WordPiece tokenization, we can + # often find a "better match". For example: + # + # Question: What year was John Smith born? + # Context: The leader was John Smith (1895-1943). + # Answer: 1895 + # + # The original whitespace-tokenized answer will be "(1895-1943).". However + # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match + # the exact answer, 1895. + # + # However, this is not always possible. Consider the following: + # + # Question: What country is the top exporter of electornics? + # Context: The Japanese electronics industry is the lagest in the world. + # Answer: Japan + # + # In this case, the annotator chose "Japan" as a character sub-span of + # the word "Japanese". Since our WordPiece tokenizer does not split + # "Japanese", we just use "Japanese" as the annotation. This is fairly rare + # in MRQA, but does happen. + tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) + + for new_start in range(input_start, input_end + 1): + for new_end in range(input_end, new_start - 1, -1): + text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) + if text_span == tok_answer_text: + return (new_start, new_end) + + return (input_start, input_end) + + +def _check_is_max_context(doc_spans, cur_span_index, position): + """Check if this is the 'max context' doc span for the token.""" + + # Because of the sliding window approach taken to scoring documents, a single + # token can appear in multiple documents. E.g. + # Doc: the man went to the store and bought a gallon of milk + # Span A: the man went to the + # Span B: to the store and bought + # Span C: and bought a gallon of + # ... + # + # Now the word 'bought' will have two scores from spans B and C. We only + # want to consider the score with "maximum context", which we define as + # the *minimum* of its left and right context (the *sum* of left and + # right context will always be the same, of course). + # + # In the example the maximum context for 'bought' would be span C since + # it has 1 left context and 3 right context, while span B has 4 left context + # and 0 right context. + best_score = None + best_span_index = None + for (span_index, doc_span) in enumerate(doc_spans): + end = doc_span.start + doc_span.length - 1 + if position < doc_span.start: + continue + if position > end: + continue + num_left_context = position - doc_span.start + num_right_context = end - position + score = min(num_left_context, + num_right_context) + 0.01 * doc_span.length + if best_score is None or score > best_score: + best_score = score + best_span_index = span_index + + return cur_span_index == best_span_index + diff --git a/build/lib/paddlepalm/reader/mrc4ernie.py b/build/lib/paddlepalm/reader/mrc4ernie.py new file mode 100644 index 0000000000000000000000000000000000000000..0c550dfdb68cbaf442ceef0e1187db509e022139 --- /dev/null +++ b/build/lib/paddlepalm/reader/mrc4ernie.py @@ -0,0 +1,119 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddlepalm.interface import reader +from paddlepalm.reader.utils.reader4ernie import MRCReader + +class Reader(reader): + + def __init__(self, config, phase='train', dev_count=1, print_prefix=''): + """ + Args: + phase: train, eval, pred + """ + + self._is_training = phase == 'train' + + reader = MRCReader(config['vocab_path'], + max_seq_len=config['max_seq_len'], + do_lower_case=config.get('do_lower_case', False), + tokenizer='FullTokenizer', + for_cn=config.get('for_cn', False), + doc_stride=config['doc_stride'], + max_query_length=config['max_query_len'], + random_seed=config.get('seed', None)) + self._reader = reader + self._dev_count = dev_count + + self._batch_size = config['batch_size'] + self._max_seq_len = config['max_seq_len'] + if phase == 'train': + self._input_file = config['train_file'] + # self._num_epochs = config['num_epochs'] + self._num_epochs = None # 防止iteartor终止 + self._shuffle = config.get('shuffle', False) + self._shuffle_buffer = config.get('shuffle_buffer', 5000) + if phase == 'eval': + self._input_file = config['dev_file'] + self._num_epochs = 1 + self._shuffle = False + self._batch_size = config.get('pred_batch_size', self._batch_size) + elif phase == 'pred': + self._input_file = config['pred_file'] + self._num_epochs = 1 + self._shuffle = False + self._batch_size = config.get('pred_batch_size', self._batch_size) + + self._phase = phase + # self._batch_size = + self._print_first_n = config.get('print_first_n', 1) + + # TODO: without slide window version + self._with_slide_window = config.get('with_slide_window', False) + + + @property + def outputs_attr(self): + if self._is_training: + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'], + "start_positions": [[-1, 1], 'int64'], + "end_positions": [[-1, 1], 'int64'], + "task_ids": [[-1, -1, 1], 'int64'] + } + else: + return {"token_ids": [[-1, -1, 1], 'int64'], + "position_ids": [[-1, -1, 1], 'int64'], + "segment_ids": [[-1, -1, 1], 'int64'], + "task_ids": [[-1, -1, 1], 'int64'], + "input_mask": [[-1, -1, 1], 'float32'], + "unique_ids": [[-1, 1], 'int64'] + } + + @property + def epoch_outputs_attr(self): + if not self._is_training: + return {"examples": None, + "features": None} + + def load_data(self): + self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) + + def iterator(self): + + def list_to_dict(x): + names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', + 'start_positions', 'end_positions', 'unique_ids'] + outputs = {n: i for n,i in zip(names, x)} + if self._is_training: + del outputs['unique_ids'] + else: + del outputs['start_positions'] + del outputs['end_positions'] + return outputs + + for batch in self._data_generator(): + yield list_to_dict(batch) + + def get_epoch_outputs(self): + return {'examples': self._reader.get_examples(self._phase), + 'features': self._reader.get_features(self._phase)} + + @property + def num_examples(self): + return self._reader.get_num_examples(phase=self._phase) + diff --git a/build/lib/paddlepalm/reader/utils/__init__.py b/build/lib/paddlepalm/reader/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/reader/utils/batching4bert.py b/build/lib/paddlepalm/reader/utils/batching4bert.py new file mode 100644 index 0000000000000000000000000000000000000000..daeb25ae9e0fd2dfd4abe021453a71ccd790d562 --- /dev/null +++ b/build/lib/paddlepalm/reader/utils/batching4bert.py @@ -0,0 +1,184 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Mask, padding and batching.""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +import numpy as np + + +def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3): + """ + Add mask for batch_tokens, return out, mask_label, mask_pos; + Note: mask_pos responding the batch_tokens after padded; + """ + max_len = max([len(sent) for sent in batch_tokens]) + mask_label = [] + mask_pos = [] + prob_mask = np.random.rand(total_token_num) + # Note: the first token is [CLS], so [low=1] + replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num) + pre_sent_len = 0 + prob_index = 0 + for sent_index, sent in enumerate(batch_tokens): + mask_flag = False + prob_index += pre_sent_len + for token_index, token in enumerate(sent): + prob = prob_mask[prob_index + token_index] + if prob > 0.15: + continue + elif 0.03 < prob <= 0.15: + # mask + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = MASK + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + elif 0.015 < prob <= 0.03: + # random replace + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = replace_ids[prob_index + token_index] + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + else: + # keep the original token + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + mask_pos.append(sent_index * max_len + token_index) + pre_sent_len = len(sent) + # ensure at least mask one word in a sentence + while not mask_flag: + token_index = int(np.random.randint(1, high=len(sent) - 1, size=1)) + if sent[token_index] != SEP and sent[token_index] != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = MASK + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + mask_label = np.array(mask_label).astype("int64").reshape([-1, 1]) + mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1]) + return batch_tokens, mask_label, mask_pos + + +def prepare_batch_data(insts, + total_token_num, + max_len=None, + voc_size=0, + pad_id=None, + cls_id=None, + sep_id=None, + mask_id=None, + return_input_mask=True, + return_max_len=True, + return_num_token=False): + """ + 1. generate Tensor of data + 2. generate Tensor of position + 3. generate self attention mask, [shape: batch_size * max_len * max_len] + """ + batch_src_ids = [inst[0] for inst in insts] + batch_sent_ids = [inst[1] for inst in insts] + batch_pos_ids = [inst[2] for inst in insts] + labels_list = [] + # compatible with mrqa, whose example includes start/end positions, + # or unique id + for i in range(3, len(insts[0]), 1): + labels = [inst[i] for inst in insts] + labels = np.array(labels).astype("int64").reshape([-1, 1]) + labels_list.append(labels) + # First step: do mask without padding + if mask_id >= 0: + out, mask_label, mask_pos = mask( + batch_src_ids, + total_token_num, + vocab_size=voc_size, + CLS=cls_id, + SEP=sep_id, + MASK=mask_id) + else: + out = batch_src_ids + # Second step: padding + src_id, self_input_mask = pad_batch_data( + out, + max_len=max_len, + pad_idx=pad_id, return_input_mask=True) + pos_id = pad_batch_data( + batch_pos_ids, + max_len=max_len, + pad_idx=pad_id, + return_pos=False, + return_input_mask=False) + sent_id = pad_batch_data( + batch_sent_ids, + max_len=max_len, + pad_idx=pad_id, + return_pos=False, + return_input_mask=False) + if mask_id >= 0: + return_list = [ + src_id, pos_id, sent_id, self_input_mask, mask_label, mask_pos + ] + labels_list + else: + return_list = [src_id, pos_id, sent_id, self_input_mask] + labels_list + return return_list if len(return_list) > 1 else return_list[0] + + +def pad_batch_data(insts, + max_len=None, + pad_idx=0, + return_pos=False, + return_input_mask=False, + return_max_len=False, + return_num_token=False): + """ + Pad the instances to the max sequence length in batch, and generate the + corresponding position data and input mask. + """ + return_list = [] + if max_len is None: + max_len = max(len(inst) for inst in insts) + # Any token included in dict can be used to pad, since the paddings' loss + # will be masked out by weights and make no effect on parameter gradients. + inst_data = np.array([ + list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts + ]) + return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])] + # position data + if return_pos: + inst_pos = np.array([ + list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst)) + for inst in insts + ]) + return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])] + if return_input_mask: + # This is used to avoid attention on paddings. + input_mask_data = np.array([[1] * len(inst) + [0] * + (max_len - len(inst)) for inst in insts]) + input_mask_data = np.expand_dims(input_mask_data, axis=-1) + return_list += [input_mask_data.astype("float32")] + if return_max_len: + return_list += [max_len] + if return_num_token: + num_token = 0 + for inst in insts: + num_token += len(inst) + return_list += [num_token] + return return_list if len(return_list) > 1 else return_list[0] + + +if __name__ == "__main__": + pass + + diff --git a/build/lib/paddlepalm/reader/utils/batching4ernie.py b/build/lib/paddlepalm/reader/utils/batching4ernie.py new file mode 100644 index 0000000000000000000000000000000000000000..d3d13573c38af3d7d6e7027cbff06969b449b722 --- /dev/null +++ b/build/lib/paddlepalm/reader/utils/batching4ernie.py @@ -0,0 +1,175 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Mask, padding and batching.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np + +from six.moves import xrange + + +def mask(batch_tokens, + seg_labels, + mask_word_tags, + total_token_num, + vocab_size, + CLS=1, + SEP=2, + MASK=3): + """ + Add mask for batch_tokens, return out, mask_label, mask_pos; + Note: mask_pos responding the batch_tokens after padded; + """ + max_len = max([len(sent) for sent in batch_tokens]) + mask_label = [] + mask_pos = [] + prob_mask = np.random.rand(total_token_num) + # Note: the first token is [CLS], so [low=1] + replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num) + pre_sent_len = 0 + prob_index = 0 + for sent_index, sent in enumerate(batch_tokens): + mask_flag = False + mask_word = mask_word_tags[sent_index] + prob_index += pre_sent_len + if mask_word: + beg = 0 + for token_index, token in enumerate(sent): + seg_label = seg_labels[sent_index][token_index] + if seg_label == 1: + continue + if beg == 0: + if seg_label != -1: + beg = token_index + continue + + prob = prob_mask[prob_index + beg] + if prob > 0.15: + pass + else: + for index in xrange(beg, token_index): + prob = prob_mask[prob_index + index] + base_prob = 1.0 + if index == beg: + base_prob = 0.15 + if base_prob * 0.2 < prob <= base_prob: + mask_label.append(sent[index]) + sent[index] = MASK + mask_flag = True + mask_pos.append(sent_index * max_len + index) + elif base_prob * 0.1 < prob <= base_prob * 0.2: + mask_label.append(sent[index]) + sent[index] = replace_ids[prob_index + index] + mask_flag = True + mask_pos.append(sent_index * max_len + index) + else: + mask_label.append(sent[index]) + mask_pos.append(sent_index * max_len + index) + + if seg_label == -1: + beg = 0 + else: + beg = token_index + else: + for token_index, token in enumerate(sent): + prob = prob_mask[prob_index + token_index] + if prob > 0.15: + continue + elif 0.03 < prob <= 0.15: + # mask + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = MASK + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + elif 0.015 < prob <= 0.03: + # random replace + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = replace_ids[prob_index + + token_index] + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + else: + # keep the original token + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + mask_pos.append(sent_index * max_len + token_index) + + pre_sent_len = len(sent) + + mask_label = np.array(mask_label).astype("int64").reshape([-1, 1]) + mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1]) + return batch_tokens, mask_label, mask_pos + + +def pad_batch_data(insts, + pad_idx=0, + return_pos=False, + return_input_mask=False, + return_max_len=False, + return_num_token=False, + return_seq_lens=False): + """ + Pad the instances to the max sequence length in batch, and generate the + corresponding position data and attention bias. + """ + return_list = [] + max_len = max(len(inst) for inst in insts) + # Any token included in dict can be used to pad, since the paddings' loss + # will be masked out by weights and make no effect on parameter gradients. + + inst_data = np.array( + [inst + list([pad_idx] * (max_len - len(inst))) for inst in insts]) + return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])] + + # position data + if return_pos: + inst_pos = np.array([ + list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst)) + for inst in insts + ]) + + return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])] + + if return_input_mask: + # This is used to avoid attention on paddings. + input_mask_data = np.array([[1] * len(inst) + [0] * + (max_len - len(inst)) for inst in insts]) + input_mask_data = np.expand_dims(input_mask_data, axis=-1) + return_list += [input_mask_data.astype("float32")] + + if return_max_len: + return_list += [max_len] + + if return_num_token: + num_token = 0 + for inst in insts: + num_token += len(inst) + return_list += [num_token] + + if return_seq_lens: + seq_lens = np.array([len(inst) for inst in insts]) + return_list += [seq_lens.astype("int64").reshape([-1, 1])] + + return return_list if len(return_list) > 1 else return_list[0] + + +if __name__ == "__main__": + + pass diff --git a/build/lib/paddlepalm/reader/utils/mlm_batching.py b/build/lib/paddlepalm/reader/utils/mlm_batching.py new file mode 100644 index 0000000000000000000000000000000000000000..71d4ab944540fd6e9e6a09674f2e21f993fe7b36 --- /dev/null +++ b/build/lib/paddlepalm/reader/utils/mlm_batching.py @@ -0,0 +1,175 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Mask, padding and batching.""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +import numpy as np + + +def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3): + """ + Add mask for batch_tokens, return out, mask_label, mask_pos; + Note: mask_pos responding the batch_tokens after padded; + """ + max_len = max([len(sent) for sent in batch_tokens]) + mask_label = [] + mask_pos = [] + prob_mask = np.random.rand(total_token_num) + # Note: the first token is [CLS], so [low=1] + replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num) + pre_sent_len = 0 + prob_index = 0 + for sent_index, sent in enumerate(batch_tokens): + mask_flag = False + prob_index += pre_sent_len + for token_index, token in enumerate(sent): + prob = prob_mask[prob_index + token_index] + if prob > 0.15: + continue + elif 0.03 < prob <= 0.15: + # mask + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = MASK + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + elif 0.015 < prob <= 0.03: + # random replace + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = replace_ids[prob_index + token_index] + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + else: + # keep the original token + if token != SEP and token != CLS: + mask_label.append(sent[token_index]) + mask_pos.append(sent_index * max_len + token_index) + pre_sent_len = len(sent) + # ensure at least mask one word in a sentence + while not mask_flag: + token_index = int(np.random.randint(1, high=len(sent) - 1, size=1)) + if sent[token_index] != SEP and sent[token_index] != CLS: + mask_label.append(sent[token_index]) + sent[token_index] = MASK + mask_flag = True + mask_pos.append(sent_index * max_len + token_index) + mask_label = np.array(mask_label).astype("int64").reshape([-1, 1]) + mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1]) + return batch_tokens, mask_label, mask_pos + + +def prepare_batch_data(insts, + total_token_num, + max_len=None, + voc_size=0, + pad_id=None, + cls_id=None, + sep_id=None, + mask_id=None, + task_id=0, + return_input_mask=True, + return_max_len=True, + return_num_token=False): + """ + 1. generate Tensor of data + 2. generate Tensor of position + 3. generate self attention mask, [shape: batch_size * max_len * max_len] + """ + batch_src_ids = [inst[0] for inst in insts] + batch_sent_ids = [inst[1] for inst in insts] + batch_pos_ids = [inst[2] for inst in insts] + + # First step: do mask without padding + out, mask_label, mask_pos = mask( + batch_src_ids, + total_token_num, + vocab_size=voc_size, + CLS=cls_id, + SEP=sep_id, + MASK=mask_id) + # Second step: padding + src_id, self_input_mask = pad_batch_data( + out, + max_len=max_len, + pad_idx=pad_id, return_input_mask=True) + pos_id = pad_batch_data( + batch_pos_ids, + max_len=max_len, + pad_idx=pad_id, + return_pos=False, + return_input_mask=False) + sent_id = pad_batch_data( + batch_sent_ids, + max_len=max_len, + pad_idx=pad_id, + return_pos=False, + return_input_mask=False) + task_ids = np.ones_like( + src_id, dtype="int64") * task_id + return_list = [ + src_id, pos_id, sent_id, self_input_mask, task_ids, mask_label, mask_pos + ] + return return_list if len(return_list) > 1 else return_list[0] + + +def pad_batch_data(insts, + max_len=None, + pad_idx=0, + return_pos=False, + return_input_mask=False, + return_max_len=False, + return_num_token=False): + """ + Pad the instances to the max sequence length in batch, and generate the + corresponding position data and input mask. + """ + return_list = [] + if max_len is None: + max_len = max(len(inst) for inst in insts) + # Any token included in dict can be used to pad, since the paddings' loss + # will be masked out by weights and make no effect on parameter gradients. + inst_data = np.array([ + list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts + ]) + return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])] + # position data + if return_pos: + inst_pos = np.array([ + list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst)) + for inst in insts + ]) + return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])] + if return_input_mask: + # This is used to avoid attention on paddings. + input_mask_data = np.array([[1] * len(inst) + [0] * + (max_len - len(inst)) for inst in insts]) + input_mask_data = np.expand_dims(input_mask_data, axis=-1) + return_list += [input_mask_data.astype("float32")] + if return_max_len: + return_list += [max_len] + if return_num_token: + num_token = 0 + for inst in insts: + num_token += len(inst) + return_list += [num_token] + return return_list if len(return_list) > 1 else return_list[0] + + +if __name__ == "__main__": + pass + + diff --git a/build/lib/paddlepalm/reader/utils/mrqa_helper.py b/build/lib/paddlepalm/reader/utils/mrqa_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..e4f8bf53f0d51bde88148b10e40af95dbf0a0e0a --- /dev/null +++ b/build/lib/paddlepalm/reader/utils/mrqa_helper.py @@ -0,0 +1,84 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +class MRQAExample(object): + """A single training/test example for simple sequence classification. + + For examples without an answer, the start and end position are -1. + """ + + def __init__(self, + qas_id, + question_text, + doc_tokens, + orig_answer_text=None, + start_position=None, + end_position=None, + is_impossible=False): + self.qas_id = qas_id + self.question_text = question_text + self.doc_tokens = doc_tokens + self.orig_answer_text = orig_answer_text + self.start_position = start_position + self.end_position = end_position + self.is_impossible = is_impossible + + def __str__(self): + return self.__repr__() + + def __repr__(self): + s = "" + s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) + s += ", question_text: %s" % ( + tokenization.printable_text(self.question_text)) + s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) + if self.start_position: + s += ", start_position: %d" % (self.start_position) + if self.start_position: + s += ", end_position: %d" % (self.end_position) + if self.start_position: + s += ", is_impossible: %r" % (self.is_impossible) + return s + + +class MRQAFeature(object): + """A single set of features of data.""" + + def __init__(self, + unique_id, + example_index, + doc_span_index, + tokens, + token_to_orig_map, + token_is_max_context, + input_ids, + input_mask, + segment_ids, + start_position=None, + end_position=None, + is_impossible=None): + self.unique_id = unique_id + self.example_index = example_index + self.doc_span_index = doc_span_index + self.tokens = tokens + self.token_to_orig_map = token_to_orig_map + self.token_is_max_context = token_is_max_context + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.start_position = start_position + self.end_position = end_position + self.is_impossible = is_impossible + diff --git a/build/lib/paddlepalm/reader/utils/reader4ernie.py b/build/lib/paddlepalm/reader/utils/reader4ernie.py new file mode 100644 index 0000000000000000000000000000000000000000..85a42d6db7e1bcc35af7cb80ece57cf647762823 --- /dev/null +++ b/build/lib/paddlepalm/reader/utils/reader4ernie.py @@ -0,0 +1,989 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + +import sys +import os +import json +import random +import logging +import numpy as np +import six +from io import open +from collections import namedtuple + +import paddlepalm.tokenizer.ernie_tokenizer as tokenization +from paddlepalm.reader.utils.batching4ernie import pad_batch_data +from paddlepalm.reader.utils.mlm_batching import prepare_batch_data + + +log = logging.getLogger(__name__) + +if six.PY3: + import io + sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') + sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') + + +def csv_reader(fd, delimiter='\t'): + def gen(): + for i in fd: + slots = i.rstrip('\n').split(delimiter) + if len(slots) == 1: + yield slots, + else: + yield slots + return gen() + + +class BaseReader(object): + def __init__(self, + vocab_path, + label_map_config=None, + max_seq_len=512, + do_lower_case=True, + in_tokens=False, + is_inference=False, + random_seed=None, + tokenizer="FullTokenizer", + is_classify=True, + is_regression=False, + for_cn=True, + task_id=0): + self.max_seq_len = max_seq_len + self.tokenizer = tokenization.FullTokenizer( + vocab_file=vocab_path, do_lower_case=do_lower_case) + self.vocab = self.tokenizer.vocab + self.pad_id = self.vocab["[PAD]"] + self.cls_id = self.vocab["[CLS]"] + self.sep_id = self.vocab["[SEP]"] + self.in_tokens = in_tokens + self.is_inference = is_inference + self.for_cn = for_cn + self.task_id = task_id + + np.random.seed(random_seed) + + self.is_classify = is_classify + self.is_regression = is_regression + self.current_example = 0 + self.current_epoch = 0 + self.num_examples = 0 + + self.examples = {} + + if label_map_config: + with open(label_map_config, encoding='utf8') as f: + self.label_map = json.load(f) + else: + self.label_map = None + + def get_train_progress(self): + """Gets progress for training phase.""" + return self.current_example, self.current_epoch + + def _read_tsv(self, input_file, quotechar=None): + """Reads a tab separated value file.""" + with open(input_file, 'r', encoding='utf8') as f: + reader = csv_reader(f) + headers = next(reader) + Example = namedtuple('Example', headers) + + examples = [] + for line in reader: + example = Example(*line) + examples.append(example) + return examples + + def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): + """Truncates a sequence pair in place to the maximum length.""" + + # This is a simple heuristic which will always truncate the longer sequence + # one token at a time. This makes more sense than truncating an equal percent + # of tokens from each, since if one sequence is very short then each token + # that's truncated likely contains more information than a longer sequence. + while True: + total_length = len(tokens_a) + len(tokens_b) + if total_length <= max_length: + break + if len(tokens_a) > len(tokens_b): + tokens_a.pop() + else: + tokens_b.pop() + + def _convert_example_to_record(self, example, max_seq_length, tokenizer): + """Converts a single `Example` into a single `Record`.""" + + text_a = tokenization.convert_to_unicode(example.text_a) + tokens_a = tokenizer.tokenize(text_a) + tokens_b = None + + has_text_b = False + if isinstance(example, dict): + has_text_b = "text_b" in example.keys() + else: + has_text_b = "text_b" in example._fields + + if has_text_b: + text_b = tokenization.convert_to_unicode(example.text_b) + tokens_b = tokenizer.tokenize(text_b) + + if tokens_b: + # Modifies `tokens_a` and `tokens_b` in place so that the total + # length is less than the specified length. + # Account for [CLS], [SEP], [SEP] with "- 3" + self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) + else: + # Account for [CLS] and [SEP] with "- 2" + if len(tokens_a) > max_seq_length - 2: + tokens_a = tokens_a[0:(max_seq_length - 2)] + + # The convention in BERT/ERNIE is: + # (a) For sequence pairs: + # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] + # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 + # (b) For single sequences: + # tokens: [CLS] the dog is hairy . [SEP] + # type_ids: 0 0 0 0 0 0 0 + # + # Where "type_ids" are used to indicate whether this is the first + # sequence or the second sequence. The embedding vectors for `type=0` and + # `type=1` were learned during pre-training and are added to the wordpiece + # embedding vector (and position vector). This is not *strictly* necessary + # since the [SEP] token unambiguously separates the sequences, but it makes + # it easier for the model to learn the concept of sequences. + # + # For classification tasks, the first vector (corresponding to [CLS]) is + # used as as the "sentence vector". Note that this only makes sense because + # the entire model is fine-tuned. + tokens = [] + text_type_ids = [] + tokens.append("[CLS]") + text_type_ids.append(0) + for token in tokens_a: + tokens.append(token) + text_type_ids.append(0) + tokens.append("[SEP]") + text_type_ids.append(0) + + if tokens_b: + for token in tokens_b: + tokens.append(token) + text_type_ids.append(1) + tokens.append("[SEP]") + text_type_ids.append(1) + + token_ids = tokenizer.convert_tokens_to_ids(tokens) + position_ids = list(range(len(token_ids))) + + if self.is_inference: + Record = namedtuple('Record', + ['token_ids', 'text_type_ids', 'position_ids']) + record = Record( + token_ids=token_ids, + text_type_ids=text_type_ids, + position_ids=position_ids) + else: + if self.label_map: + label_id = self.label_map[example.label] + else: + label_id = example.label + + Record = namedtuple('Record', [ + 'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid' + ]) + + qid = None + if "qid" in example._fields: + qid = example.qid + + record = Record( + token_ids=token_ids, + text_type_ids=text_type_ids, + position_ids=position_ids, + label_id=label_id, + qid=qid) + return record + + def _prepare_batch_data(self, examples, batch_size, phase=None): + """generate batch records""" + batch_records, max_len = [], 0 + for index, example in enumerate(examples): + if phase == "train": + self.current_example = index + record = self._convert_example_to_record(example, self.max_seq_len, + self.tokenizer) + max_len = max(max_len, len(record.token_ids)) + if self.in_tokens: + to_append = (len(batch_records) + 1) * max_len <= batch_size + else: + to_append = len(batch_records) < batch_size + if to_append: + batch_records.append(record) + else: + yield self._pad_batch_records(batch_records) + batch_records, max_len = [record], len(record.token_ids) + + if phase == 'pred' and batch_records: + print('the last batch yielded.') + yield self._pad_batch_records(batch_records) + + def get_num_examples(self, input_file=None, phase=None): + if self.examples is not None: + if phase is None: + phase = 'all' + return len(self.examples[phase]) + else: + assert input_file is not None, "Argument input_file should be given or the data_generator should be created when this func is called." + examples = self._read_tsv(input_file) + return len(examples) + + def data_generator(self, + input_file, + batch_size, + epoch, + dev_count=1, + shuffle=True, + phase=None): + examples = self._read_tsv(input_file) + if phase is None: + phase = 'all' + self.examples[phase] = examples + + def wrapper(): + all_dev_batches = [] + if epoch is None: + num_epochs = 99999999 + else: + num_epochs = epoch + for epoch_index in range(num_epochs): + if phase == "train": + self.current_example = 0 + self.current_epoch = epoch_index + if shuffle: + np.random.shuffle(examples) + + for batch_data in self._prepare_batch_data( + examples, batch_size, phase=phase): + if len(all_dev_batches) < dev_count: + all_dev_batches.append(batch_data) + if len(all_dev_batches) == dev_count: + for batch in all_dev_batches: + yield batch + all_dev_batches = [] + def f(): + for i in wrapper(): + yield i + + # def f(): + # try: + # for i in wrapper(): + # yield i + # except Exception as e: + # import traceback + # traceback.print_exc() + + return f + + +class MaskLMReader(BaseReader): + + def _convert_example_to_record(self, example, max_seq_length, tokenizer): + """Converts a single `Example` into a single `Record`.""" + + text_a = tokenization.convert_to_unicode(example.text_a) + tokens_a = tokenizer.tokenize(text_a) + tokens_b = None + + + has_text_b = False + if isinstance(example, dict): + has_text_b = "text_b" in example.keys() + else: + has_text_b = "text_b" in example._fields + + if has_text_b: + text_b = tokenization.convert_to_unicode(example.text_b) + tokens_b = tokenizer.tokenize(text_b) + + if tokens_b: + # Modifies `tokens_a` and `tokens_b` in place so that the total + # length is less than the specified length. + # Account for [CLS], [SEP], [SEP] with "- 3" + self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) + else: + # Account for [CLS] and [SEP] with "- 2" + if len(tokens_a) > max_seq_length - 2: + tokens_a = tokens_a[0:(max_seq_length - 2)] + + # The convention in BERT/ERNIE is: + # (a) For sequence pairs: + # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] + # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 + # (b) For single sequences: + # tokens: [CLS] the dog is hairy . [SEP] + # type_ids: 0 0 0 0 0 0 0 + # + # Where "type_ids" are used to indicate whether this is the first + # sequence or the second sequence. The embedding vectors for `type=0` and + # `type=1` were learned during pre-training and are added to the wordpiece + # embedding vector (and position vector). This is not *strictly* necessary + # since the [SEP] token unambiguously separates the sequences, but it makes + # it easier for the model to learn the concept of sequences. + # + # For classification tasks, the first vector (corresponding to [CLS]) is + # used as as the "sentence vector". Note that this only makes sense because + # the entire model is fine-tuned. + tokens = [] + text_type_ids = [] + tokens.append("[CLS]") + text_type_ids.append(0) + for token in tokens_a: + tokens.append(token) + text_type_ids.append(0) + tokens.append("[SEP]") + text_type_ids.append(0) + + if tokens_b: + for token in tokens_b: + tokens.append(token) + text_type_ids.append(1) + tokens.append("[SEP]") + text_type_ids.append(1) + + token_ids = tokenizer.convert_tokens_to_ids(tokens) + position_ids = list(range(len(token_ids))) + + Record = namedtuple('Record', + ['token_ids', 'text_type_ids', 'position_ids']) + record = Record( + token_ids=token_ids, + text_type_ids=text_type_ids, + position_ids=position_ids) + + return record + + def batch_reader(examples, batch_size, in_tokens, phase): + batch, total_token_num, max_len = [], 0, 0 + for e in examples: + token_ids, sent_ids, pos_ids = _convert_example_to_record(e, self.max_seq_len, self.tokenizer) + max_len = max(max_len, len(token_ids)) + if in_tokens: + to_append = (len(batch) + 1) * max_len <= batch_size + else: + to_append = len(batch) < batch_size + if to_append: + batch.append(parsed_line) + total_token_num += len(token_ids) + else: + yield batch, total_token_num + batch, total_token_num, max_len = [parsed_line], len( + token_ids), len(token_ids) + + if len(batch) > 0 and phase == 'pred': + yield batch, total_token_num + + def data_generator(self, + input_file, + batch_size, + epoch, + dev_count=1, + shuffle=True, + phase=None): + examples = self._read_tsv(input_file) + if phase is None: + phase = 'all' + self.examples[phase] = examples + + def wrapper(): + all_dev_batches = [] + if epoch is None: + num_epochs = 99999999 + else: + num_epochs = epoch + for epoch_index in range(num_epochs): + if phase == "train": + self.current_example = 0 + self.current_epoch = epoch_index + if shuffle: + np.random.shuffle(examples) + + all_dev_batches = [] + for batch_data, total_token_num in batch_reader(examples, + self.batch_size, self.in_tokens, phase=phase): + batch_data = prepare_batch_data( + batch_data, + total_token_num, + voc_size=self.voc_size, + pad_id=self.pad_id, + cls_id=self.cls_id, + sep_id=self.sep_id, + mask_id=self.mask_id, + max_len=self.max_seq_len, + return_input_mask=True, + return_max_len=False, + return_num_token=False) + + if len(all_dev_batches) < dev_count: + all_dev_batches.append(batch_data) + if len(all_dev_batches) == dev_count: + for batch in all_dev_batches: + yield batch + all_dev_batches = [] + + return wrapper + + +class ClassifyReader(BaseReader): + def _read_tsv(self, input_file, quotechar=None): + """Reads a tab separated value file.""" + with open(input_file, 'r', encoding='utf8') as f: + reader = csv_reader(f) + headers = next(reader) + text_indices = [ + index for index, h in enumerate(headers) if h != "label" + ] + Example = namedtuple('Example', headers) + + examples = [] + for line in reader: + for index, text in enumerate(line): + if index in text_indices: + if self.for_cn: + line[index] = text.replace(' ', '') + else: + line[index] = text + example = Example(*line) + examples.append(example) + return examples + + def _pad_batch_records(self, batch_records): + batch_token_ids = [record.token_ids for record in batch_records] + batch_text_type_ids = [record.text_type_ids for record in batch_records] + batch_position_ids = [record.position_ids for record in batch_records] + + if not self.is_inference: + batch_labels = [record.label_id for record in batch_records] + if self.is_classify: + batch_labels = np.array(batch_labels).astype("int64").reshape( + [-1, 1]) + elif self.is_regression: + batch_labels = np.array(batch_labels).astype("float32").reshape( + [-1, 1]) + + if batch_records[0].qid: + batch_qids = [record.qid for record in batch_records] + batch_qids = np.array(batch_qids).astype("int64").reshape( + [-1, 1]) + else: + batch_qids = np.array([]).astype("int64").reshape([-1, 1]) + + # padding + padded_token_ids, input_mask = pad_batch_data( + batch_token_ids, pad_idx=self.pad_id, return_input_mask=True) + padded_text_type_ids = pad_batch_data( + batch_text_type_ids, pad_idx=self.pad_id) + padded_position_ids = pad_batch_data( + batch_position_ids, pad_idx=self.pad_id) + padded_task_ids = np.ones_like( + padded_token_ids, dtype="int64") * self.task_id + + return_list = [ + padded_token_ids, padded_text_type_ids, padded_position_ids, + padded_task_ids, input_mask + ] + if not self.is_inference: + return_list += [batch_labels, batch_qids] + + return return_list + + +class SequenceLabelReader(BaseReader): + def _pad_batch_records(self, batch_records): + batch_token_ids = [record.token_ids for record in batch_records] + batch_text_type_ids = [record.text_type_ids for record in batch_records] + batch_position_ids = [record.position_ids for record in batch_records] + batch_label_ids = [record.label_ids for record in batch_records] + + # padding + padded_token_ids, input_mask, batch_seq_lens = pad_batch_data( + batch_token_ids, + pad_idx=self.pad_id, + return_input_mask=True, + return_seq_lens=True) + padded_text_type_ids = pad_batch_data( + batch_text_type_ids, pad_idx=self.pad_id) + padded_position_ids = pad_batch_data( + batch_position_ids, pad_idx=self.pad_id) + padded_label_ids = pad_batch_data( + batch_label_ids, pad_idx=len(self.label_map) - 1) + padded_task_ids = np.ones_like( + padded_token_ids, dtype="int64") * self.task_id + + return_list = [ + padded_token_ids, padded_text_type_ids, padded_position_ids, + padded_task_ids, input_mask, padded_label_ids, batch_seq_lens + ] + return return_list + + def _reseg_token_label(self, tokens, labels, tokenizer): + assert len(tokens) == len(labels) + ret_tokens = [] + ret_labels = [] + for token, label in zip(tokens, labels): + sub_token = tokenizer.tokenize(token) + if len(sub_token) == 0: + continue + ret_tokens.extend(sub_token) + if len(sub_token) == 1: + ret_labels.append(label) + continue + + if label == "O" or label.startswith("I-"): + ret_labels.extend([label] * len(sub_token)) + elif label.startswith("B-"): + i_label = "I-" + label[2:] + ret_labels.extend([label] + [i_label] * (len(sub_token) - 1)) + elif label.startswith("S-"): + b_laebl = "B-" + label[2:] + e_label = "E-" + label[2:] + i_label = "I-" + label[2:] + ret_labels.extend([b_laebl] + [i_label] * (len(sub_token) - 2) + [e_label]) + elif label.startswith("E-"): + i_label = "I-" + label[2:] + ret_labels.extend([i_label] * (len(sub_token) - 1) + [label]) + + assert len(ret_tokens) == len(ret_labels) + return ret_tokens, ret_labels + + def _convert_example_to_record(self, example, max_seq_length, tokenizer): + tokens = tokenization.convert_to_unicode(example.text_a).split(u"") + labels = tokenization.convert_to_unicode(example.label).split(u"") + tokens, labels = self._reseg_token_label(tokens, labels, tokenizer) + + if len(tokens) > max_seq_length - 2: + tokens = tokens[0:(max_seq_length - 2)] + labels = labels[0:(max_seq_length - 2)] + + tokens = ["[CLS]"] + tokens + ["[SEP]"] + token_ids = tokenizer.convert_tokens_to_ids(tokens) + position_ids = list(range(len(token_ids))) + text_type_ids = [0] * len(token_ids) + no_entity_id = len(self.label_map) - 1 + label_ids = [no_entity_id] + [ + self.label_map[label] for label in labels + ] + [no_entity_id] + + Record = namedtuple( + 'Record', + ['token_ids', 'text_type_ids', 'position_ids', 'label_ids']) + record = Record( + token_ids=token_ids, + text_type_ids=text_type_ids, + position_ids=position_ids, + label_ids=label_ids) + return record + + +class ExtractEmbeddingReader(BaseReader): + def _pad_batch_records(self, batch_records): + batch_token_ids = [record.token_ids for record in batch_records] + batch_text_type_ids = [record.text_type_ids for record in batch_records] + batch_position_ids = [record.position_ids for record in batch_records] + + # padding + padded_token_ids, input_mask, seq_lens = pad_batch_data( + batch_token_ids, + pad_idx=self.pad_id, + return_input_mask=True, + return_seq_lens=True) + padded_text_type_ids = pad_batch_data( + batch_text_type_ids, pad_idx=self.pad_id) + padded_position_ids = pad_batch_data( + batch_position_ids, pad_idx=self.pad_id) + padded_task_ids = np.ones_like( + padded_token_ids, dtype="int64") * self.task_id + + return_list = [ + padded_token_ids, padded_text_type_ids, padded_position_ids, + padded_task_ids, input_mask, seq_lens + ] + + return return_list + + +class MRCReader(BaseReader): + def __init__(self, + vocab_path, + label_map_config=None, + max_seq_len=512, + do_lower_case=True, + in_tokens=False, + random_seed=None, + tokenizer="FullTokenizer", + is_classify=True, + is_regression=False, + for_cn=True, + task_id=0, + doc_stride=128, + max_query_length=64): + self.max_seq_len = max_seq_len + self.tokenizer = tokenization.FullTokenizer( + vocab_file=vocab_path, do_lower_case=do_lower_case) + self.vocab = self.tokenizer.vocab + self.pad_id = self.vocab["[PAD]"] + self.cls_id = self.vocab["[CLS]"] + self.sep_id = self.vocab["[SEP]"] + self.in_tokens = in_tokens + self.for_cn = for_cn + self.task_id = task_id + self.doc_stride = doc_stride + self.max_query_length = max_query_length + self.examples = {} + self.features = {} + + if random_seed is not None: + np.random.seed(random_seed) + + self.current_example = 0 + self.current_epoch = 0 + self.num_examples = 0 + + self.Example = namedtuple('Example', + ['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text', + 'start_position', 'end_position']) + self.Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index", + "tokens", "token_to_orig_map", "token_is_max_context", + "token_ids", "position_ids", "text_type_ids", + "start_position", "end_position"]) + self.DocSpan = namedtuple("DocSpan", ["start", "length"]) + + def _read_json(self, input_file, is_training): + examples = [] + with open(input_file, "r", encoding='utf8') as f: + input_data = json.load(f)["data"] + for entry in input_data: + for paragraph in entry["paragraphs"]: + paragraph_text = paragraph["context"] + for qa in paragraph["qas"]: + qas_id = qa["id"] + question_text = qa["question"] + start_pos = None + end_pos = None + orig_answer_text = None + + if is_training: + if len(qa["answers"]) != 1: + raise ValueError( + "For training, each question should have exactly 1 answer." + ) + + answer = qa["answers"][0] + orig_answer_text = answer["text"] + answer_offset = answer["answer_start"] + answer_length = len(orig_answer_text) + doc_tokens = [ + paragraph_text[:answer_offset], + paragraph_text[answer_offset:answer_offset + + answer_length], + paragraph_text[answer_offset + answer_length:] + ] + + start_pos = 1 + end_pos = 1 + + actual_text = " ".join(doc_tokens[start_pos:(end_pos + + 1)]) + if actual_text.find(orig_answer_text) == -1: + log.info("Could not find answer: '%s' vs. '%s'", + actual_text, orig_answer_text) + continue + else: + doc_tokens = tokenization.tokenize_chinese_chars( + paragraph_text) + + example = self.Example( + qas_id=qas_id, + question_text=question_text, + doc_tokens=doc_tokens, + orig_answer_text=orig_answer_text, + start_position=start_pos, + end_position=end_pos) + examples.append(example) + + return examples + + def _improve_answer_span(self, doc_tokens, input_start, input_end, + tokenizer, orig_answer_text): + tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) + + for new_start in range(input_start, input_end + 1): + for new_end in range(input_end, new_start - 1, -1): + text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) + if text_span == tok_answer_text: + return (new_start, new_end) + + return (input_start, input_end) + + def _check_is_max_context(self, doc_spans, cur_span_index, position): + best_score = None + best_span_index = None + for (span_index, doc_span) in enumerate(doc_spans): + end = doc_span.start + doc_span.length - 1 + if position < doc_span.start: + continue + if position > end: + continue + num_left_context = position - doc_span.start + num_right_context = end - position + score = min(num_left_context, + num_right_context) + 0.01 * doc_span.length + if best_score is None or score > best_score: + best_score = score + best_span_index = span_index + + return cur_span_index == best_span_index + + def _convert_example_to_feature(self, examples, max_seq_length, tokenizer, + is_training): + features = [] + unique_id = 1000000000 + + for (example_index, example) in enumerate(examples): + query_tokens = tokenizer.tokenize(example.question_text) + if len(query_tokens) > self.max_query_length: + query_tokens = query_tokens[0:self.max_query_length] + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + tok_start_position = None + tok_end_position = None + if is_training: + tok_start_position = orig_to_tok_index[example.start_position] + if example.end_position < len(example.doc_tokens) - 1: + tok_end_position = orig_to_tok_index[example.end_position + + 1] - 1 + else: + tok_end_position = len(all_doc_tokens) - 1 + (tok_start_position, + tok_end_position) = self._improve_answer_span( + all_doc_tokens, tok_start_position, tok_end_position, + tokenizer, example.orig_answer_text) + + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(self.DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, self.doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + tokens = [] + token_to_orig_map = {} + token_is_max_context = {} + text_type_ids = [] + tokens.append("[CLS]") + text_type_ids.append(0) + for token in query_tokens: + tokens.append(token) + text_type_ids.append(0) + tokens.append("[SEP]") + text_type_ids.append(0) + + for i in range(doc_span.length): + split_token_index = doc_span.start + i + token_to_orig_map[len(tokens)] = tok_to_orig_index[ + split_token_index] + + is_max_context = self._check_is_max_context( + doc_spans, doc_span_index, split_token_index) + token_is_max_context[len(tokens)] = is_max_context + tokens.append(all_doc_tokens[split_token_index]) + text_type_ids.append(1) + tokens.append("[SEP]") + text_type_ids.append(1) + + token_ids = tokenizer.convert_tokens_to_ids(tokens) + position_ids = list(range(len(token_ids))) + start_position = None + end_position = None + if is_training: + doc_start = doc_span.start + doc_end = doc_span.start + doc_span.length - 1 + out_of_span = False + if not (tok_start_position >= doc_start and + tok_end_position <= doc_end): + out_of_span = True + if out_of_span: + start_position = 0 + end_position = 0 + else: + doc_offset = len(query_tokens) + 2 + start_position = tok_start_position - doc_start + doc_offset + end_position = tok_end_position - doc_start + doc_offset + + feature = self.Feature( + unique_id=unique_id, + example_index=example_index, + doc_span_index=doc_span_index, + tokens=tokens, + token_to_orig_map=token_to_orig_map, + token_is_max_context=token_is_max_context, + token_ids=token_ids, + position_ids=position_ids, + text_type_ids=text_type_ids, + start_position=start_position, + end_position=end_position) + features.append(feature) + + unique_id += 1 + + return features + + def _prepare_batch_data(self, records, batch_size, phase=None): + """generate batch records""" + batch_records, max_len = [], 0 + + for index, record in enumerate(records): + if phase == "train": + self.current_example = index + max_len = max(max_len, len(record.token_ids)) + if self.in_tokens: + to_append = (len(batch_records) + 1) * max_len <= batch_size + else: + to_append = len(batch_records) < batch_size + if to_append: + batch_records.append(record) + else: + yield self._pad_batch_records(batch_records, phase == "train") + batch_records, max_len = [record], len(record.token_ids) + + if phase == 'pred' and batch_records: + yield self._pad_batch_records(batch_records, phase == "train") + + def _pad_batch_records(self, batch_records, is_training): + batch_token_ids = [record.token_ids for record in batch_records] + batch_text_type_ids = [record.text_type_ids for record in batch_records] + batch_position_ids = [record.position_ids for record in batch_records] + if is_training: + batch_start_position = [ + record.start_position for record in batch_records + ] + batch_end_position = [ + record.end_position for record in batch_records + ] + batch_start_position = np.array(batch_start_position).astype( + "int64").reshape([-1, 1]) + batch_end_position = np.array(batch_end_position).astype( + "int64").reshape([-1, 1]) + + else: + batch_size = len(batch_token_ids) + batch_start_position = np.zeros( + shape=[batch_size, 1], dtype="int64") + batch_end_position = np.zeros(shape=[batch_size, 1], dtype="int64") + + batch_unique_ids = [record.unique_id for record in batch_records] + batch_unique_ids = np.array(batch_unique_ids).astype("int64").reshape( + [-1, 1]) + + # padding + padded_token_ids, input_mask = pad_batch_data( + batch_token_ids, pad_idx=self.pad_id, return_input_mask=True) + padded_text_type_ids = pad_batch_data( + batch_text_type_ids, pad_idx=self.pad_id) + padded_position_ids = pad_batch_data( + batch_position_ids, pad_idx=self.pad_id) + padded_task_ids = np.ones_like( + padded_token_ids, dtype="int64") * self.task_id + + return_list = [ + padded_token_ids, padded_text_type_ids, padded_position_ids, + padded_task_ids, input_mask, batch_start_position, + batch_end_position, batch_unique_ids + ] + + return return_list + + def get_num_examples(self, phase): + return len(self.features[phase]) + + def get_features(self, phase): + return self.features[phase] + + def get_examples(self, phase): + return self.examples[phase] + + def data_generator(self, + input_file, + batch_size, + epoch, + dev_count=1, + shuffle=True, + phase=None): + + examples = self.examples.get(phase, None) + features = self.features.get(phase, None) + if not examples: + examples = self._read_json(input_file, phase == "train") + features = self._convert_example_to_feature( + examples, self.max_seq_len, self.tokenizer, phase == "train") + self.examples[phase] = examples + self.features[phase] = features + + def wrapper(): + all_dev_batches = [] + if epoch is None: + num_epochs = 99999999 + else: + num_epochs = epoch + for epoch_index in range(num_epochs): + if phase == "train": + self.current_example = 0 + self.current_epoch = epoch_index + if phase == "train" and shuffle: + np.random.shuffle(features) + + for batch_data in self._prepare_batch_data( + features, batch_size, phase=phase): + if len(all_dev_batches) < dev_count: + all_dev_batches.append(batch_data) + if len(all_dev_batches) == dev_count: + for batch in all_dev_batches: + yield batch + all_dev_batches = [] + + return wrapper + + +if __name__ == '__main__': + pass diff --git a/build/lib/paddlepalm/task_instance.py b/build/lib/paddlepalm/task_instance.py new file mode 100644 index 0000000000000000000000000000000000000000..70a338874823a5231f0fea77363c949e21fb10b1 --- /dev/null +++ b/build/lib/paddlepalm/task_instance.py @@ -0,0 +1,286 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from paddlepalm.interface import reader as base_reader +from paddlepalm.interface import task_paradigm as base_paradigm +import os +import json +from paddle import fluid + +class TaskInstance(object): + + def __init__(self, name, id, config={}, verbose=True): + self._name = name + self._config = config + self._verbose = verbose + + self._save_infermodel_path = os.path.join(self._config['save_path'], 'infer_model') + self._save_ckpt_path = os.path.join(self._config['save_path'], 'ckpt') + + # following flags can be fetch from instance config file + self._is_target = config.get('is_target', True) + self._first_target = config.get('is_first_target', False) + self._task_reuse_scope = config.get('task_reuse_scope', name) + + self._feeded_var_names = None + self._target_vars = None + + # training process management + self._mix_ratio = None + self._expected_train_steps = None + self._expected_train_epochs = None + self._steps_pur_epoch = None + self._cur_train_epoch = 0 + self._cur_train_step = 0 + self._train_finish = False + + # 存放不同运行阶段(train,eval,pred)的数据集reader,key为phase,value为Reader实例 + self._reader = {'train': None, 'eval': None, 'pred': None} + self._input_layer = None + self._inputname_to_varname = {} + self._task_layer = {'train': None, 'eval': None, 'pred': None} + self._pred_input_name_list = [] + self._pred_input_varname_list = [] + self._pred_fetch_name_list = [] + self._pred_fetch_var_list = [] + + self._Reader = None + self._Paradigm = None + + self._exe = fluid.Executor(fluid.CPUPlace()) + + self._save_protocol = { + 'input_names': 'self._pred_input_name_list', + 'input_varnames': 'self._pred_input_varname_list', + 'fetch_list': 'self._pred_fetch_name_list'} + + + def build_task_layer(self, net_inputs, phase): + output_vars = self._task_layer[phase].build(net_inputs) + if phase == 'pred': + self._pred_fetch_name_list, self._pred_fetch_var_list = zip(*output_vars.items()) + return output_vars + + def postprocess(self, rt_outputs, phase): + return self._task_layer[phase].postprocess(rt_outputs) + + def epoch_postprocess(self, epoch_inputs, phase): + return self._task_layer[phase].epoch_postprocess(epoch_inputs) + + def save(self, suffix=''): + dirpath = self._save_infermodel_path + suffix + self._pred_input_varname_list = [str(i) for i in self._pred_input_varname_list] + + fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe) + # fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, params_filename='__params__') + print(self._name + ': inference model saved at ' + dirpath) + + conf = {} + for k, strv in self._save_protocol.items(): + exec('v={}'.format(strv)) + conf[k] = v + with open(os.path.join(dirpath, '__conf__'), 'w') as writer: + writer.write(json.dumps(conf, indent=1)) + + def load(self, infer_model_path=None): + if infer_model_path is None: + infer_model_path = self._save_infermodel_path + for k,v in json.load(open(os.path.join(infer_model_path, '__conf__'))).items(): + strv = self._save_protocol[k] + exec('{}=v'.format(strv)) + pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \ + fluid.io.load_inference_model(infer_model_path, self._exe) + # pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \ + # fluid.io.load_inference_model(infer_model_path, self._exe, params_filename='__params__') + print(self._name+': inference model loaded from ' + infer_model_path) + return pred_prog + + @property + def name(self): + return self._name + + @property + def Reader(self): + return self._Reader + + @Reader.setter + def Reader(self, cls): + assert base_reader.__name__ == cls.__bases__[-1].__name__, \ + "expect: {}, receive: {}.".format(base_reader.__name__, \ + cls.__bases__[-1].__name__) + self._Reader = cls + + @property + def Paradigm(self): + return self._Paradigm + + @Paradigm.setter + def Paradigm(self, cls): + assert base_paradigm.__name__ == cls.__bases__[-1].__name__, \ + "expect: {}, receive: {}.".format(base_paradigm.__name__, \ + cls.__bases__[-1].__name__) + self._Paradigm = cls + + @property + def config(self): + return self._config + + @property + def reader(self): + return self._reader + + @property + def pred_input(self): + return zip(*[self._pred_input_name_list, self._pred_input_varname_list]) + + @pred_input.setter + def pred_input(self, val): + assert isinstance(val, dict) + self._pred_input_name_list, self._pred_input_varname_list = \ + zip(*[[k, v.name] for k,v in val.items()]) + # print(self._pred_input_name_list) + + @property + def pred_fetch_list(self): + return [self._pred_fetch_name_list, self._pred_fetch_var_list] + + @property + def task_layer(self): + return self._task_layer + + @property + def is_first_target(self): + return self._is_first_target + + @is_first_target.setter + def is_first_target(self, value): + self._is_first_target = bool(value) + if self._is_first_target: + assert self._is_target, "ERROR: only target task could be set as main task." + if self._verbose and self._is_first_target: + print("{}: set as main task".format(self._name)) + + @property + def is_target(self): + if self._is_target is not None: + return self._is_target + else: + raise ValueError("{}: is_target is None".format(self._name)) + + @is_target.setter + def is_target(self, value): + self._is_target = bool(value) + if self._verbose: + if self._is_target: + print('{}: set as target task.'.format(self._name)) + else: + print('{}: set as aux task.'.format(self._name)) + + @property + def mix_ratio(self): + if self._mix_ratio is not None: + return self._mix_ratio + else: + raise ValueError("{}: mix_ratio is None".format(self._name)) + + @mix_ratio.setter + def mix_ratio(self, value): + self._mix_ratio = float(value) + if self._verbose: + print('{}: mix_ratio is set to {}'.format(self._name, self._mix_ratio)) + + @property + def expected_train_steps(self): + return self._expected_train_steps + + @expected_train_steps.setter + def expected_train_steps(self, value): + self._expected_train_steps = value + self._expected_train_epochs = value / float(self._steps_pur_epoch) + + @property + def expected_train_epochs(self): + return self._expected_train_epochs + + @property + def cur_train_epoch(self): + return self._cur_train_epoch + + @cur_train_epoch.setter + def cur_train_epoch(self, value): + self._cur_train_epoch = value + + @property + def cur_train_step(self): + return self._cur_train_step + + @cur_train_step.setter + def cur_train_step(self, value): + self._cur_train_step = value + if self._cur_train_step > self._steps_pur_epoch: + self._cur_train_epoch += 1 + self._cur_train_step = 1 + if self._is_target and self._cur_train_step + self._cur_train_epoch * self._steps_pur_epoch >= self._expected_train_steps: + self._train_finish = True + print(self._name+': train finished!') + self.save() + # fluid.io.save_inference_model(self._save_infermodel_path, ) + + @property + def steps_pur_epoch(self): + return self._steps_pur_epoch + + @steps_pur_epoch.setter + def steps_pur_epoch(self, value): + self._steps_pur_epoch = value + + @property + def train_finish(self): + return self._train_finish + + @property + def task_reuse_scope(self): + if self._task_reuse_scope is not None: + return self._task_reuse_scope + else: + raise ValueError("{}: task_reuse_scope is None".format(self._name)) + + @task_reuse_scope.setter + def task_reuse_scope(self, scope_name): + self._task_reuse_scope = str(scope_name) + if self._verbose: + print('{}: task_reuse_scope is set to {}'.format(self._name, self._task_reuse_scope)) + + + + + + + + + + +def check_instances(insts): + """to check ids, first_target""" + pass + +def _check_ids(): + pass + +def _check_targets(): + pass + +def _check_reuse_scopes(): + pass diff --git a/build/lib/paddlepalm/task_paradigm/__init__.py b/build/lib/paddlepalm/task_paradigm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/task_paradigm/cls.py b/build/lib/paddlepalm/task_paradigm/cls.py new file mode 100644 index 0000000000000000000000000000000000000000..f69b8176b58189022984f787e703d72bc303d1a7 --- /dev/null +++ b/build/lib/paddlepalm/task_paradigm/cls.py @@ -0,0 +1,60 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.fluid as fluid +from paddlepalm.interface import task_paradigm +from paddle.fluid import layers + +class TaskParadigm(task_paradigm): + ''' + classification + ''' + def __init___(self, config, phase): + self._is_training = phase == 'train' + self.sent_emb_size = config['hidden_size'] + self.num_classes = config['n_classes'] + + @property + def inputs_attrs(self): + return {'bakcbone': {"sentence_emb": [-1, self.sent_emb_size], 'float32']}, + 'reader': {"label_ids": [[-1, 1], 'int64']}} + + @property + def outputs_attrs(self): + if self._is_training: + return {'loss': [[1], 'float32']} + else: + return {'logits': [-1, self.num_classes], 'float32'} + + def build(self, **inputs): + sent_emb = inputs['backbone']['sentence_emb'] + label_ids = inputs['reader']['label_ids'] + + logits = fluid.layers.fc( + input=ent_emb + size=self.num_classes, + param_attr=fluid.ParamAttr( + name="cls_out_w", + initializer=fluid.initializer.TruncatedNormal(scale=0.1)), + bias_attr=fluid.ParamAttr( + name="cls_out_b", initializer=fluid.initializer.Constant(0.))) + + loss = fluid.layers.softmax_with_cross_entropy( + logits=logits, label=label_ids) + loss = layers.mean(loss) + if self._is_training: + return {"loss": loss} + else: + return {"logits":logits} diff --git a/build/lib/paddlepalm/task_paradigm/match.py b/build/lib/paddlepalm/task_paradigm/match.py new file mode 100644 index 0000000000000000000000000000000000000000..58bbf35d56d16ab2b0a2ebcd9c653b9e1c666087 --- /dev/null +++ b/build/lib/paddlepalm/task_paradigm/match.py @@ -0,0 +1,70 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.fluid as fluid +from paddlepalm.interface import task_paradigm +from paddle.fluid import layers + +class TaskParadigm(task_paradigm): + ''' + matching + ''' + def __init__(self, config, phase, backbone_config=None): + self._is_training = phase == 'train' + self._hidden_size = backbone_config['hidden_size'] + + @property + def inputs_attrs(self): + if self._is_training: + reader = {"label_ids": [[-1, 1], 'int64']} + else: + reader = {} + bb = {"sentence_pair_embedding": [[-1, self._hidden_size], 'float32']} + return {'reader': reader, 'backbone': bb} + + @property + def outputs_attrs(self): + if self._is_training: + return {"loss": [[1], 'float32']} + else: + return {"logits": [[-1, 1], 'float32']} + + def build(self, inputs): + if self._is_training: + labels = inputs["reader"]["label_ids"] + cls_feats = inputs["backbone"]["sentence_pair_embedding"] + + cls_feats = fluid.layers.dropout( + x=cls_feats, + dropout_prob=0.1, + dropout_implementation="upscale_in_train") + logits = fluid.layers.fc( + input=cls_feats, + size=2, + param_attr=fluid.ParamAttr( + name="cls_out_w", + initializer=fluid.initializer.TruncatedNormal(scale=0.02)), + bias_attr=fluid.ParamAttr( + name="cls_out_b", + initializer=fluid.initializer.Constant(0.))) + + if self._is_training: + ce_loss, probs = fluid.layers.softmax_with_cross_entropy( + logits=logits, label=labels, return_softmax=True) + loss = fluid.layers.mean(x=ce_loss) + return {'loss': loss} + else: + return {'logits': logits} + diff --git a/build/lib/paddlepalm/task_paradigm/mlm.py b/build/lib/paddlepalm/task_paradigm/mlm.py new file mode 100644 index 0000000000000000000000000000000000000000..817b009cdf3d8cefd35f601b0d9c2d572145c0f4 --- /dev/null +++ b/build/lib/paddlepalm/task_paradigm/mlm.py @@ -0,0 +1,111 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.fluid as fluid +from paddlepalm.interface import task_paradigm +from paddle.fluid import layers + +class TaskParadigm(task_paradigm): + ''' + matching + ''' + def __init__(self, config, phase, backbone_config=None): + self._is_training = phase == 'train' + self._hidden_size = backbone_config['hidden_size'] + self._vocab_size = backbone_config['vocab_size'] + self._hidden_act = backbone_config['hidden_act'] + self._initializer_range = backbone_config['initializer_range'] + + @property + def inputs_attrs(self): + if self._is_training: + reader = {"label_ids": [[-1, 1], 'int64']} + else: + reader = {} + bb = {"encoder_outputs": [[-1, self._hidden_size], 'float32']} + return {'reader': reader, 'backbone': bb} + + @property + def outputs_attrs(self): + if self._is_training: + return {"loss": [[1], 'float32']} + else: + return {"logits": [[-1, 1], 'float32']} + + def build(self, inputs): + mask_label = inputs["reader"]["mask_label"] + mask_pos = inputs["reader"]["mask_pos"] + word_emb = inputs["backbone"]["word_embedding"] + enc_out = inputs["backbone"]["encoder_outputs"] + + emb_size = word_emb.shape[-1] + + _param_initializer = fluid.initializer.TruncatedNormal( + scale=self._initializer_range) + + mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32') + + reshaped_emb_out = fluid.layers.reshape( + x=enc_out, shape=[-1, emb_size]) + + # extract masked tokens' feature + mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos) + num_seqs = fluid.layers.fill_constant(shape=[1], value=512, dtype='int64') + + # transform: fc + mask_trans_feat = fluid.layers.fc( + input=mask_feat, + size=emb_size, + act=self._hidden_act, + param_attr=fluid.ParamAttr( + name='mask_lm_trans_fc.w_0', + initializer=_param_initializer), + bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0')) + # transform: layer norm + mask_trans_feat = pre_process_layer( + mask_trans_feat, 'n', name='mask_lm_trans') + + mask_lm_out_bias_attr = fluid.ParamAttr( + name="mask_lm_out_fc.b_0", + initializer=fluid.initializer.Constant(value=0.0)) + + # print fluid.default_main_program().global_block() + + # fc_out = fluid.layers.matmul( + # x=mask_trans_feat, + # y=fluid.default_main_program().global_block().var( + # _word_emb_name), + # transpose_y=True) + + fc_out = fluid.layers.matmul( + x=mask_trans_feat, + y=word_emb, + transpose_y=True) + fc_out += fluid.layers.create_parameter( + shape=[self._vocab_size], + dtype='float32', + attr=mask_lm_out_bias_attr, + is_bias=True) + + mask_lm_loss = fluid.layers.softmax_with_cross_entropy( + logits=fc_out, label=mask_label) + loss = fluid.layers.mean(mask_lm_loss) + + if self._is_training: + return {'loss': loss} + else: + return None + + diff --git a/build/lib/paddlepalm/task_paradigm/mrc.py b/build/lib/paddlepalm/task_paradigm/mrc.py new file mode 100644 index 0000000000000000000000000000000000000000..1d3642ad87328dd3c5b874cbad4eb2662e732538 --- /dev/null +++ b/build/lib/paddlepalm/task_paradigm/mrc.py @@ -0,0 +1,486 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.fluid as fluid +from paddlepalm.interface import task_paradigm +import collections +import numpy as np +import os +import math +import six +import paddlepalm.tokenizer.ernie_tokenizer as tokenization +import json + +RawResult = collections.namedtuple("RawResult", + ["unique_id", "start_logits", "end_logits"]) + +class TaskParadigm(task_paradigm): + """""" + + def __init__(self, config, phase, backbone_config=None): + + self._is_training = phase == 'train' + self._max_sequence_length = config['max_seq_len'] + self._hidden_size = backbone_config['hidden_size'] + self._pred_results = [] + + if phase == 'pred': + self._max_answer_length = config.get('max_answer_len', None) + self._null_score_diff_threshold = config.get('null_score_diff_threshold', 0.0) + self._n_best_size = config.get('n_best_size', 20) + self._pred_output_path = config.get('pred_output_path', None) + self._verbose = config.get('verbose', False) + self._with_negative = config.get('with_negative', False) + self._do_lower_case = config.get('do_lower_case', False) + + + @property + def inputs_attrs(self): + if self._is_training: + reader = {"start_positions": [[-1, 1], 'int64'], + "end_positions": [[-1, 1], 'int64']} + else: + reader = {'unique_ids': [[-1, 1], 'int64']} + bb = {"encoder_outputs": [[-1, -1, self._hidden_size], 'float32']} + return {'reader': reader, 'backbone': bb} + + @property + def epoch_inputs_attrs(self): + if not self._is_training: + from_reader = {'examples': None, 'features': None} + return {'reader': from_reader} + + @property + def outputs_attr(self): + if self._is_training: + return {'loss': [[1], 'float32']} + else: + return {'start_logits': [[-1, -1, 1], 'float32'], + 'end_logits': [[-1, -1, 1], 'float32'], + 'unique_ids': [[-1, 1], 'int64']} + + + def build(self, inputs): + if self._is_training: + start_positions = inputs['reader']['start_positions'] + end_positions = inputs['reader']['end_positions'] + else: + unique_id = inputs['reader']['unique_ids'] + + enc_out = inputs['backbone']['encoder_outputs'] + logits = fluid.layers.fc( + input=enc_out, + size=2, + num_flatten_dims=2, + param_attr=fluid.ParamAttr( + name="cls_squad_out_w", + initializer=fluid.initializer.TruncatedNormal(scale=0.02)), + bias_attr=fluid.ParamAttr( + name="cls_squad_out_b", initializer=fluid.initializer.Constant(0.))) + + logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1]) + start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0) + + def _compute_single_loss(logits, positions): + """Compute start/end loss for mrc model""" + loss = fluid.layers.softmax_with_cross_entropy( + logits=logits, label=positions) + loss = fluid.layers.mean(x=loss) + return loss + + if self._is_training: + start_loss = _compute_single_loss(start_logits, start_positions) + end_loss = _compute_single_loss(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2.0 + return {'loss': total_loss} + else: + return {'start_logits': start_logits, + 'end_logits': end_logits, + 'unique_ids': unique_id} + + + def postprocess(self, rt_outputs): + """this func will be called after each step(batch) of training/evaluating/predicting process.""" + if not self._is_training: + unique_ids = np.squeeze(rt_outputs['unique_ids'], -1) + start_logits = rt_outputs['start_logits'] + end_logits = rt_outputs['end_logits'] + for idx in range(len(unique_ids)): + + if unique_ids[idx] < 0: + continue + if len(self._pred_results) % 1000 == 0: + print("Predicting example: {}".format(len(self._pred_results))) + uid = int(unique_ids[idx]) + + s = [float(x) for x in start_logits[idx].flat] + e = [float(x) for x in end_logits[idx].flat] + self._pred_results.append( + RawResult( + unique_id=uid, + start_logits=s, + end_logits=e)) + + def epoch_postprocess(self, post_inputs): + """(optional interface) this func will be called after evaluation/predicting process and each epoch during training process.""" + + if not self._is_training: + if self._pred_output_path is None: + raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.') + examples = post_inputs['reader']['examples'] + features = post_inputs['reader']['features'] + if not os.path.exists(self._pred_output_path): + os.makedirs(self._pred_output_path) + output_prediction_file = os.path.join(self._pred_output_path, "predictions.json") + output_nbest_file = os.path.join(self._pred_output_path, "nbest_predictions.json") + output_null_log_odds_file = os.path.join(self._pred_output_path, "null_odds.json") + _write_predictions(examples, features, self._pred_results, + self._n_best_size, self._max_answer_length, + self._do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, + self._with_negative, + self._null_score_diff_threshold, self._verbose) + + +def _write_predictions(all_examples, all_features, all_results, n_best_size, + max_answer_length, do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, + with_negative, null_score_diff_threshold, + verbose): + """Write final predictions to the json file and log-odds of null if needed.""" + print("Writing predictions to: %s" % (output_prediction_file)) + print("Writing nbest to: %s" % (output_nbest_file)) + + example_index_to_features = collections.defaultdict(list) + for feature in all_features: + example_index_to_features[feature.example_index].append(feature) + + unique_id_to_result = {} + for result in all_results: + unique_id_to_result[result.unique_id] = result + + _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name + "PrelimPrediction", [ + "feature_index", "start_index", "end_index", "start_logit", + "end_logit" + ]) + + all_predictions = collections.OrderedDict() + all_nbest_json = collections.OrderedDict() + scores_diff_json = collections.OrderedDict() + + for (example_index, example) in enumerate(all_examples): + features = example_index_to_features[example_index] + + prelim_predictions = [] + # keep track of the minimum score of null start+end of position 0 + score_null = 1000000 # large and positive + min_null_feature_index = 0 # the paragraph slice with min mull score + null_start_logit = 0 # the start logit at the slice with min null score + null_end_logit = 0 # the end logit at the slice with min null score + for (feature_index, feature) in enumerate(features): + result = unique_id_to_result[feature.unique_id] + start_indexes = _get_best_indexes(result.start_logits, n_best_size) + end_indexes = _get_best_indexes(result.end_logits, n_best_size) + # if we could have irrelevant answers, get the min score of irrelevant + if with_negative: + feature_null_score = result.start_logits[0] + result.end_logits[ + 0] + if feature_null_score < score_null: + score_null = feature_null_score + min_null_feature_index = feature_index + null_start_logit = result.start_logits[0] + null_end_logit = result.end_logits[0] + for start_index in start_indexes: + for end_index in end_indexes: + # We could hypothetically create invalid predictions, e.g., predict + # that the start of the span is in the question. We throw out all + # invalid predictions. + if start_index >= len(feature.tokens): + continue + if end_index >= len(feature.tokens): + continue + if start_index not in feature.token_to_orig_map: + continue + if end_index not in feature.token_to_orig_map: + continue + if not feature.token_is_max_context.get(start_index, False): + continue + if end_index < start_index: + continue + length = end_index - start_index + 1 + if length > max_answer_length: + continue + prelim_predictions.append( + _PrelimPrediction( + feature_index=feature_index, + start_index=start_index, + end_index=end_index, + start_logit=result.start_logits[start_index], + end_logit=result.end_logits[end_index])) + + if with_negative: + prelim_predictions.append( + _PrelimPrediction( + feature_index=min_null_feature_index, + start_index=0, + end_index=0, + start_logit=null_start_logit, + end_logit=null_end_logit)) + prelim_predictions = sorted( + prelim_predictions, + key=lambda x: (x.start_logit + x.end_logit), + reverse=True) + + _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name + "NbestPrediction", ["text", "start_logit", "end_logit"]) + + seen_predictions = {} + nbest = [] + for pred in prelim_predictions: + if len(nbest) >= n_best_size: + break + feature = features[pred.feature_index] + if pred.start_index > 0: # this is a non-null prediction + tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1 + )] + orig_doc_start = feature.token_to_orig_map[pred.start_index] + orig_doc_end = feature.token_to_orig_map[pred.end_index] + orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + + 1)] + tok_text = " ".join(tok_tokens) + + # De-tokenize WordPieces that have been split off. + tok_text = tok_text.replace(" ##", "") + tok_text = tok_text.replace("##", "") + + # Clean whitespace + tok_text = tok_text.strip() + tok_text = " ".join(tok_text.split()) + orig_text = " ".join(orig_tokens) + + final_text = _get_final_text(tok_text, orig_text, do_lower_case, + verbose) + if final_text in seen_predictions: + continue + + seen_predictions[final_text] = True + else: + final_text = "" + seen_predictions[final_text] = True + + nbest.append( + _NbestPrediction( + text=final_text, + start_logit=pred.start_logit, + end_logit=pred.end_logit)) + + # if we didn't inlude the empty option in the n-best, inlcude it + if with_negative: + if "" not in seen_predictions: + nbest.append( + _NbestPrediction( + text="", + start_logit=null_start_logit, + end_logit=null_end_logit)) + # In very rare edge cases we could have no valid predictions. So we + # just create a nonce prediction in this case to avoid failure. + if not nbest: + nbest.append( + _NbestPrediction( + text="empty", start_logit=0.0, end_logit=0.0)) + + assert len(nbest) >= 1 + + total_scores = [] + best_non_null_entry = None + for entry in nbest: + total_scores.append(entry.start_logit + entry.end_logit) + if not best_non_null_entry: + if entry.text: + best_non_null_entry = entry + # debug + if best_non_null_entry is None: + print("Emmm..., sth wrong") + + probs = _compute_softmax(total_scores) + + nbest_json = [] + for (i, entry) in enumerate(nbest): + output = collections.OrderedDict() + output["text"] = entry.text + output["probability"] = probs[i] + output["start_logit"] = entry.start_logit + output["end_logit"] = entry.end_logit + nbest_json.append(output) + + assert len(nbest_json) >= 1 + + if not with_negative: + all_predictions[example.qas_id] = nbest_json[0]["text"] + else: + # predict "" iff the null score - the score of best non-null > threshold + score_diff = score_null - best_non_null_entry.start_logit - ( + best_non_null_entry.end_logit) + scores_diff_json[example.qas_id] = score_diff + if score_diff > null_score_diff_threshold: + all_predictions[example.qas_id] = "" + else: + all_predictions[example.qas_id] = best_non_null_entry.text + + all_nbest_json[example.qas_id] = nbest_json + + with open(output_prediction_file, "w") as writer: + writer.write(json.dumps(all_predictions, indent=4) + "\n") + + with open(output_nbest_file, "w") as writer: + writer.write(json.dumps(all_nbest_json, indent=4) + "\n") + + if with_negative: + with open(output_null_log_odds_file, "w") as writer: + writer.write(json.dumps(scores_diff_json, indent=4) + "\n") + + +def _get_final_text(pred_text, orig_text, do_lower_case, verbose): + """Project the tokenized prediction back to the original text.""" + + # When we created the data, we kept track of the alignment between original + # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So + # now `orig_text` contains the span of our original text corresponding to the + # span that we predicted. + # + # However, `orig_text` may contain extra characters that we don't want in + # our prediction. + # + # For example, let's say: + # pred_text = steve smith + # orig_text = Steve Smith's + # + # We don't want to return `orig_text` because it contains the extra "'s". + # + # We don't want to return `pred_text` because it's already been normalized + # (the MRQA eval script also does punctuation stripping/lower casing but + # our tokenizer does additional normalization like stripping accent + # characters). + # + # What we really want to return is "Steve Smith". + # + # Therefore, we have to apply a semi-complicated alignment heruistic between + # `pred_text` and `orig_text` to get a character-to-charcter alignment. This + # can fail in certain cases in which case we just return `orig_text`. + + def _strip_spaces(text): + ns_chars = [] + ns_to_s_map = collections.OrderedDict() + for (i, c) in enumerate(text): + if c == " ": + continue + ns_to_s_map[len(ns_chars)] = i + ns_chars.append(c) + ns_text = "".join(ns_chars) + return (ns_text, ns_to_s_map) + + # We first tokenize `orig_text`, strip whitespace from the result + # and `pred_text`, and check if they are the same length. If they are + # NOT the same length, the heuristic has failed. If they are the same + # length, we assume the characters are one-to-one aligned. + tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) + + tok_text = " ".join(tokenizer.tokenize(orig_text)) + + start_position = tok_text.find(pred_text) + if start_position == -1: + if verbose: + print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) + return orig_text + end_position = start_position + len(pred_text) - 1 + + (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) + (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) + + if len(orig_ns_text) != len(tok_ns_text): + if verbose: + print("Length not equal after stripping spaces: '%s' vs '%s'", + orig_ns_text, tok_ns_text) + return orig_text + + # We then project the characters in `pred_text` back to `orig_text` using + # the character-to-character alignment. + tok_s_to_ns_map = {} + for (i, tok_index) in six.iteritems(tok_ns_to_s_map): + tok_s_to_ns_map[tok_index] = i + + orig_start_position = None + if start_position in tok_s_to_ns_map: + ns_start_position = tok_s_to_ns_map[start_position] + if ns_start_position in orig_ns_to_s_map: + orig_start_position = orig_ns_to_s_map[ns_start_position] + + if orig_start_position is None: + if verbose: + print("Couldn't map start position") + return orig_text + + orig_end_position = None + if end_position in tok_s_to_ns_map: + ns_end_position = tok_s_to_ns_map[end_position] + if ns_end_position in orig_ns_to_s_map: + orig_end_position = orig_ns_to_s_map[ns_end_position] + + if orig_end_position is None: + if verbose: + print("Couldn't map end position") + return orig_text + + output_text = orig_text[orig_start_position:(orig_end_position + 1)] + return output_text + + +def _get_best_indexes(logits, n_best_size): + """Get the n-best logits from a list.""" + index_and_score = sorted( + enumerate(logits), key=lambda x: x[1], reverse=True) + + best_indexes = [] + for i in range(len(index_and_score)): + if i >= n_best_size: + break + best_indexes.append(index_and_score[i][0]) + return best_indexes + + +def _compute_softmax(scores): + """Compute softmax probability over raw logits.""" + if not scores: + return [] + + max_score = None + for score in scores: + if max_score is None or score > max_score: + max_score = score + + exp_scores = [] + total_sum = 0.0 + for score in scores: + x = math.exp(score - max_score) + exp_scores.append(x) + total_sum += x + + probs = [] + for score in exp_scores: + probs.append(score / total_sum) + return probs + + diff --git a/build/lib/paddlepalm/tokenizer/__init__.py b/build/lib/paddlepalm/tokenizer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/tokenizer/bert_tokenizer.py b/build/lib/paddlepalm/tokenizer/bert_tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..f4cefd0fdfe76dbd729301734dbec8a2c7c9ce9b --- /dev/null +++ b/build/lib/paddlepalm/tokenizer/bert_tokenizer.py @@ -0,0 +1,374 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import unicodedata +import six + + +def convert_to_unicode(text): + """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" + if six.PY3: + if isinstance(text, str): + return text + elif isinstance(text, bytes): + return text.decode("utf-8", "ignore") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + elif six.PY2: + if isinstance(text, str): + return text.decode("utf-8", "ignore") + elif isinstance(text, unicode): + return text + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + else: + raise ValueError("Not running on Python2 or Python 3?") + + +def printable_text(text): + """Returns text encoded in a way suitable for print or `tf.logging`.""" + + # These functions want `str` for both Python2 and Python3, but in one case + # it's a Unicode string and in the other it's a byte string. + if six.PY3: + if isinstance(text, str): + return text + elif isinstance(text, bytes): + return text.decode("utf-8", "ignore") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + elif six.PY2: + if isinstance(text, str): + return text + elif isinstance(text, unicode): + return text.encode("utf-8") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + else: + raise ValueError("Not running on Python2 or Python 3?") + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + fin = open(vocab_file) + for num, line in enumerate(fin): + items = convert_to_unicode(line.strip()).split("\t") + if len(items) > 2: + break + token = items[0] + index = items[1] if len(items) == 2 else num + token = token.strip() + vocab[token] = int(index) + return vocab + + +def convert_by_vocab(vocab, items): + """Converts a sequence of [tokens|ids] using the vocab.""" + output = [] + for item in items: + output.append(vocab[item]) + return output + + +def convert_tokens_to_ids(vocab, tokens): + return convert_by_vocab(vocab, tokens) + + +def convert_ids_to_tokens(inv_vocab, ids): + return convert_by_vocab(inv_vocab, ids) + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a peice of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class FullTokenizer(object): + """Runs end-to-end tokenziation.""" + + def __init__(self, vocab_file, do_lower_case=True): + self.vocab = load_vocab(vocab_file) + self.inv_vocab = {v: k for k, v in self.vocab.items()} + self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + + def tokenize(self, text): + split_tokens = [] + for token in self.basic_tokenizer.tokenize(text): + for sub_token in self.wordpiece_tokenizer.tokenize(token): + split_tokens.append(sub_token) + + return split_tokens + + def convert_tokens_to_ids(self, tokens): + return convert_by_vocab(self.vocab, tokens) + + def convert_ids_to_tokens(self, ids): + return convert_by_vocab(self.inv_vocab, ids) + + +class CharTokenizer(object): + """Runs end-to-end tokenziation.""" + + def __init__(self, vocab_file, do_lower_case=True): + self.vocab = load_vocab(vocab_file) + self.inv_vocab = {v: k for k, v in self.vocab.items()} + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + + def tokenize(self, text): + split_tokens = [] + for token in text.lower().split(" "): + for sub_token in self.wordpiece_tokenizer.tokenize(token): + split_tokens.append(sub_token) + + return split_tokens + + def convert_tokens_to_ids(self, tokens): + return convert_by_vocab(self.vocab, tokens) + + def convert_ids_to_tokens(self, ids): + return convert_by_vocab(self.inv_vocab, ids) + + +class BasicTokenizer(object): + """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" + + def __init__(self, do_lower_case=True): + """Constructs a BasicTokenizer. + + Args: + do_lower_case: Whether to lower case the input. + """ + self.do_lower_case = do_lower_case + self._never_lowercase = ['[UNK]', '[SEP]', '[PAD]', '[CLS]', '[MASK]'] + + def tokenize(self, text): + """Tokenizes a piece of text.""" + text = convert_to_unicode(text) + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + text = self._tokenize_chinese_chars(text) + + orig_tokens = whitespace_tokenize(text) + split_tokens = [] + for token in orig_tokens: + if self.do_lower_case and token not in self._never_lowercase: + token = token.lower() + token = self._run_strip_accents(token) + if token in self._never_lowercase: + split_tokens.extend([token]) + else: + split_tokens.extend(self._run_split_on_punc(token)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text): + """Splits punctuation on a piece of text.""" + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ((cp >= 0x4E00 and cp <= 0x9FFF) or # + (cp >= 0x3400 and cp <= 0x4DBF) or # + (cp >= 0x20000 and cp <= 0x2A6DF) or # + (cp >= 0x2A700 and cp <= 0x2B73F) or # + (cp >= 0x2B740 and cp <= 0x2B81F) or # + (cp >= 0x2B820 and cp <= 0x2CEAF) or + (cp >= 0xF900 and cp <= 0xFAFF) or # + (cp >= 0x2F800 and cp <= 0x2FA1F)): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xfffd or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +class WordpieceTokenizer(object): + """Runs WordPiece tokenziation.""" + + def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """Tokenizes a piece of text into its word pieces. + + This uses a greedy longest-match-first algorithm to perform tokenization + using the given vocabulary. + + For example: + input = "unaffable" + output = ["un", "##aff", "##able"] + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through `BasicTokenizer. + + Returns: + A list of wordpiece tokens. + """ + + text = convert_to_unicode(text) + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens + + +def _is_whitespace(char): + """Checks whether `chars` is a whitespace character.""" + # \t, \n, and \r are technically contorl characters but we treat them + # as whitespace since they are generally considered as such. + if char == " " or char == "\t" or char == "\n" or char == "\r": + return True + cat = unicodedata.category(char) + if cat == "Zs": + return True + return False + + +def _is_control(char): + """Checks whether `chars` is a control character.""" + # These are technically control characters but we count them as whitespace + # characters. + if char == "\t" or char == "\n" or char == "\r": + return False + cat = unicodedata.category(char) + if cat.startswith("C"): + return True + return False + + +def _is_punctuation(char): + """Checks whether `chars` is a punctuation character.""" + cp = ord(char) + # We treat all non-letter/number ASCII as punctuation. + # Characters such as "^", "$", and "`" are not in the Unicode + # Punctuation class but we treat them as punctuation anyways, for + # consistency. + if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or + (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): + return True + cat = unicodedata.category(char) + if cat.startswith("P"): + return True + return False diff --git a/build/lib/paddlepalm/tokenizer/ernie_tokenizer.py b/build/lib/paddlepalm/tokenizer/ernie_tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..2e6b044fb870699dff60e0772c1fefa2f2c3db3f --- /dev/null +++ b/build/lib/paddlepalm/tokenizer/ernie_tokenizer.py @@ -0,0 +1,417 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +from __future__ import unicode_literals +from __future__ import absolute_import + +from io import open + +import collections +import unicodedata +import six + + +def convert_to_unicode(text): + """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" + if six.PY3: + if isinstance(text, str): + return text + elif isinstance(text, bytes): + return text.decode("utf-8", "ignore") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + elif six.PY2: + if isinstance(text, str): + return text.decode("utf-8", "ignore") + elif isinstance(text, unicode): + return text + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + else: + raise ValueError("Not running on Python2 or Python 3?") + + +def printable_text(text): + """Returns text encoded in a way suitable for print or `tf.logging`.""" + + # These functions want `str` for both Python2 and Python3, but in one case + # it's a Unicode string and in the other it's a byte string. + if six.PY3: + if isinstance(text, str): + return text + elif isinstance(text, bytes): + return text.decode("utf-8", "ignore") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + elif six.PY2: + if isinstance(text, str): + return text + elif isinstance(text, unicode): + return text.encode("utf-8") + else: + raise ValueError("Unsupported string type: %s" % (type(text))) + else: + raise ValueError("Not running on Python2 or Python 3?") + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, encoding='utf8') as fin: + for num, line in enumerate(fin): + items = convert_to_unicode(line.strip()).split("\t") + if len(items) > 2: + break + token = items[0] + index = items[1] if len(items) == 2 else num + token = token.strip() + vocab[token] = int(index) + return vocab + + +def convert_by_vocab(vocab, items): + """Converts a sequence of [tokens|ids] using the vocab.""" + output = [] + for item in items: + output.append(vocab[item]) + return output + + +def convert_tokens_to_ids(vocab, tokens): + return convert_by_vocab(vocab, tokens) + + +def convert_ids_to_tokens(inv_vocab, ids): + return convert_by_vocab(inv_vocab, ids) + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a peice of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class FullTokenizer(object): + """Runs end-to-end tokenziation.""" + + def __init__(self, vocab_file, do_lower_case=True): + self.vocab = load_vocab(vocab_file) + self.inv_vocab = {v: k for k, v in self.vocab.items()} + self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + + def tokenize(self, text): + split_tokens = [] + for token in self.basic_tokenizer.tokenize(text): + for sub_token in self.wordpiece_tokenizer.tokenize(token): + split_tokens.append(sub_token) + + return split_tokens + + def convert_tokens_to_ids(self, tokens): + return convert_by_vocab(self.vocab, tokens) + + def convert_ids_to_tokens(self, ids): + return convert_by_vocab(self.inv_vocab, ids) + + +class CharTokenizer(object): + """Runs end-to-end tokenziation.""" + + def __init__(self, vocab_file, do_lower_case=True): + self.vocab = load_vocab(vocab_file) + self.inv_vocab = {v: k for k, v in self.vocab.items()} + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) + + def tokenize(self, text): + split_tokens = [] + for token in text.lower().split(" "): + for sub_token in self.wordpiece_tokenizer.tokenize(token): + split_tokens.append(sub_token) + + return split_tokens + + def convert_tokens_to_ids(self, tokens): + return convert_by_vocab(self.vocab, tokens) + + def convert_ids_to_tokens(self, ids): + return convert_by_vocab(self.inv_vocab, ids) + + +class BasicTokenizer(object): + """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" + + def __init__(self, do_lower_case=True): + """Constructs a BasicTokenizer. + Args: + do_lower_case: Whether to lower case the input. + """ + self.do_lower_case = do_lower_case + + def tokenize(self, text): + """Tokenizes a piece of text.""" + text = convert_to_unicode(text) + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + text = self._tokenize_chinese_chars(text) + + orig_tokens = whitespace_tokenize(text) + split_tokens = [] + for token in orig_tokens: + if self.do_lower_case: + token = token.lower() + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text): + """Splits punctuation on a piece of text.""" + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ((cp >= 0x4E00 and cp <= 0x9FFF) or # + (cp >= 0x3400 and cp <= 0x4DBF) or # + (cp >= 0x20000 and cp <= 0x2A6DF) or # + (cp >= 0x2A700 and cp <= 0x2B73F) or # + (cp >= 0x2B740 and cp <= 0x2B81F) or # + (cp >= 0x2B820 and cp <= 0x2CEAF) or + (cp >= 0xF900 and cp <= 0xFAFF) or # + (cp >= 0x2F800 and cp <= 0x2FA1F)): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xfffd or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +class WordpieceTokenizer(object): + """Runs WordPiece tokenziation.""" + + def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """Tokenizes a piece of text into its word pieces. + This uses a greedy longest-match-first algorithm to perform tokenization + using the given vocabulary. + For example: + input = "unaffable" + output = ["un", "##aff", "##able"] + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through `BasicTokenizer. + Returns: + A list of wordpiece tokens. + """ + + text = convert_to_unicode(text) + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens + + +def _is_whitespace(char): + """Checks whether `chars` is a whitespace character.""" + # \t, \n, and \r are technically contorl characters but we treat them + # as whitespace since they are generally considered as such. + if char == " " or char == "\t" or char == "\n" or char == "\r": + return True + cat = unicodedata.category(char) + if cat == "Zs": + return True + return False + + +def _is_control(char): + """Checks whether `chars` is a control character.""" + # These are technically control characters but we count them as whitespace + # characters. + if char == "\t" or char == "\n" or char == "\r": + return False + cat = unicodedata.category(char) + if cat.startswith("C"): + return True + return False + + +def _is_punctuation(char): + """Checks whether `chars` is a punctuation character.""" + cp = ord(char) + # We treat all non-letter/number ASCII as punctuation. + # Characters such as "^", "$", and "`" are not in the Unicode + # Punctuation class but we treat them as punctuation anyways, for + # consistency. + if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or + (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): + return True + cat = unicodedata.category(char) + if cat.startswith("P"): + return True + return False + + +def tokenize_chinese_chars(text): + """Adds whitespace around any CJK character.""" + + def _is_chinese_char(cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ((cp >= 0x4E00 and cp <= 0x9FFF) or # + (cp >= 0x3400 and cp <= 0x4DBF) or # + (cp >= 0x20000 and cp <= 0x2A6DF) or # + (cp >= 0x2A700 and cp <= 0x2B73F) or # + (cp >= 0x2B740 and cp <= 0x2B81F) or # + (cp >= 0x2B820 and cp <= 0x2CEAF) or + (cp >= 0xF900 and cp <= 0xFAFF) or # + (cp >= 0x2F800 and cp <= 0x2FA1F)): # + return True + + return False + + def _is_whitespace(c): + if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: + return True + return False + + output = [] + buff = "" + for char in text: + cp = ord(char) + if _is_chinese_char(cp) or _is_whitespace(char): + if buff != "": + output.append(buff) + buff = "" + output.append(char) + else: + buff += char + + if buff != "": + output.append(buff) + + return output diff --git a/build/lib/paddlepalm/utils/__init__.py b/build/lib/paddlepalm/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/build/lib/paddlepalm/utils/config_helper.py b/build/lib/paddlepalm/utils/config_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..e00f473f6b3836d523107f67c8ce4f775b08b261 --- /dev/null +++ b/build/lib/paddlepalm/utils/config_helper.py @@ -0,0 +1,311 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import sys +import argparse +import json +import yaml +import six +import logging + +logging_only_message = "%(message)s" +logging_details = "%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s" + + +class JsonConfig(object): + """ + A high-level api for handling json configure file. + """ + + def __init__(self, config_path): + self._config_dict = self._parse(config_path) + + def _parse(self, config_path): + try: + with open(config_path) as json_file: + config_dict = json.load(json_file) + assert isinstance(config_dict, dict), "Object in {} is NOT a dict.".format(config_path) + except: + raise IOError("Error in parsing bert model config file '%s'" % + config_path) + else: + return config_dict + + def __getitem__(self, key): + return self._config_dict[key] + + def asdict(self): + return self._config_dict + + def print_config(self): + for arg, value in sorted(six.iteritems(self._config_dict)): + print('%s: %s' % (arg, value)) + print('------------------------------------------------') + + +class ArgumentGroup(object): + def __init__(self, parser, title, des): + self._group = parser.add_argument_group(title=title, description=des) + + def add_arg(self, name, type, default, help, **kwargs): + type = str2bool if type == bool else type + self._group.add_argument( + "--" + name, + default=default, + type=type, + help=help + ' Default: %(default)s.', + **kwargs) + + +class ArgConfig(object): + """ + A high-level api for handling argument configs. + """ + + def __init__(self): + parser = argparse.ArgumentParser() + + train_g = ArgumentGroup(parser, "training", "training options.") + train_g.add_arg("epoch", int, 3, "Number of epoches for fine-tuning.") + train_g.add_arg("learning_rate", float, 5e-5, + "Learning rate used to train with warmup.") + train_g.add_arg( + "lr_scheduler", + str, + "linear_warmup_decay", + "scheduler of learning rate.", + choices=['linear_warmup_decay', 'noam_decay']) + train_g.add_arg("weight_decay", float, 0.01, + "Weight decay rate for L2 regularizer.") + train_g.add_arg( + "warmup_proportion", float, 0.1, + "Proportion of training steps to perform linear learning rate warmup for." + ) + train_g.add_arg("save_steps", int, 1000, + "The steps interval to save checkpoints.") + train_g.add_arg( + "loss_scaling", float, 1.0, + "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled." + ) + train_g.add_arg("pred_dir", str, None, + "Path to save the prediction results") + + log_g = ArgumentGroup(parser, "logging", "logging related.") + log_g.add_arg("skip_steps", int, 10, + "The steps interval to print loss.") + log_g.add_arg("verbose", bool, False, "Whether to output verbose log.") + + run_type_g = ArgumentGroup(parser, "run_type", "running type options.") + run_type_g.add_arg("use_cuda", bool, True, + "If set, use GPU for training.") + run_type_g.add_arg( + "use_fast_executor", bool, False, + "If set, use fast parallel executor (in experiment).") + run_type_g.add_arg( + "num_iteration_per_drop_scope", int, 1, + "Ihe iteration intervals to clean up temporary variables.") + run_type_g.add_arg("do_train", bool, True, + "Whether to perform training.") + run_type_g.add_arg("do_predict", bool, True, + "Whether to perform prediction.") + + custom_g = ArgumentGroup(parser, "customize", "customized options.") + + self.custom_g = custom_g + + self.parser = parser + + def add_arg(self, name, dtype, default, descrip): + self.custom_g.add_arg(name, dtype, default, descrip) + + def build_conf(self): + return self.parser.parse_args() + + +def str2bool(v): + # because argparse does not support to parse "true, False" as python + # boolean directly + return v.lower() in ("true", "t", "1") + + +def print_arguments(args, log=None): + if not log: + print('----------- Configuration Arguments -----------') + for arg, value in sorted(six.iteritems(vars(args))): + print('%s: %s' % (arg, value)) + print('------------------------------------------------') + else: + log.info('----------- Configuration Arguments -----------') + for arg, value in sorted(six.iteritems(vars(args))): + log.info('%s: %s' % (arg, value)) + log.info('------------------------------------------------') + + +class PDConfig(object): + """ + A high-level API for managing configuration files in PaddlePaddle. + Can jointly work with command-line-arugment, json files and yaml files. + """ + + def __init__(self, json_file=None, yaml_file=None, fuse_args=True): + """ + Init funciton for PDConfig. + json_file: the path to the json configure file. + yaml_file: the path to the yaml configure file. + fuse_args: if fuse the json/yaml configs with argparse. + """ + + if json_file is not None and yaml_file is not None: + raise Warning( + "json_file and yaml_file can not co-exist for now. please only use one configure file type." + ) + return + + self.args = None + self.arg_config = {} + self.json_config = {} + self.yaml_config = {} + + parser = argparse.ArgumentParser() + + self.yaml_g = ArgumentGroup(parser, "yaml", "options from yaml.") + self.json_g = ArgumentGroup(parser, "json", "options from json.") + self.com_g = ArgumentGroup(parser, "custom", "customized options.") + + self.parser = parser + + if json_file is not None: + assert isinstance(json_file, str) + self.load_json(json_file, fuse_args=fuse_args) + + if yaml_file is not None: + assert isinstance(yaml_file, str) or isinstance(yaml_file, list) + self.load_yaml(yaml_file, fuse_args=fuse_args) + + def load_json(self, file_path, fuse_args=True): + + if not os.path.exists(file_path): + raise Warning("the json file %s does not exist." % file_path) + return + + with open(file_path, "r") as fin: + self.json_config = json.loads(fin.read()) + fin.close() + + if fuse_args: + for name in self.json_config: + if not isinstance(self.json_config[name], int) \ + and not isinstance(self.json_config[name], float) \ + and not isinstance(self.json_config[name], str) \ + and not isinstance(self.json_config[name], bool): + + continue + + self.json_g.add_arg(name, + type(self.json_config[name]), + self.json_config[name], + "This is from %s" % file_path) + + def load_yaml(self, file_path_list, fuse_args=True): + + if isinstance(file_path_list, str): + file_path_list = [file_path_list] + for file_path in file_path_list: + if not os.path.exists(file_path): + raise Warning("the yaml file %s does not exist." % file_path) + return + + with open(file_path, "r") as fin: + self.yaml_config = yaml.load(fin, Loader=yaml.SafeLoader) + if fuse_args: + for name in self.yaml_config: + if not isinstance(self.yaml_config[name], int) \ + and not isinstance(self.yaml_config[name], float) \ + and not isinstance(self.yaml_config[name], str) \ + and not isinstance(self.yaml_config[name], bool): + + continue + + self.yaml_g.add_arg(name, + type(self.yaml_config[name]), + self.yaml_config[name], + "This is from %s" % file_path) + + def build(self): + self.args = self.parser.parse_args() + self.arg_config = vars(self.args) + + def asdict(self): + return self.arg_config + + def __add__(self, new_arg): + assert isinstance(new_arg, list) or isinstance(new_arg, tuple) + assert len(new_arg) >= 3 + assert self.args is None + + name = new_arg[0] + dtype = new_arg[1] + dvalue = new_arg[2] + desc = new_arg[3] if len( + new_arg) == 4 else "Description is not provided." + + self.com_g.add_arg(name, dtype, dvalue, desc) + + return self + + def __getattr__(self, name): + if name in self.arg_config: + return self.arg_config[name] + + if name in self.json_config: + return self.json_config[name] + + if name in self.yaml_config: + return self.yaml_config[name] + + raise Warning("The argument %s is not defined." % name) + + def Print(self): + + print("-" * 70) + for name in self.arg_config: + print("{: <25}\t{}".format(str(name), str(self.arg_config[name]))) + + for name in self.json_config: + if name not in self.arg_config: + print("{: <25}\t{}" % + (str(name), str(self.json_config[name]))) + + for name in self.yaml_config: + if name not in self.arg_config: + print("{: <25}\t{}" % + (str(name), str(self.yaml_config[name]))) + + print("-" * 70) + + +if __name__ == "__main__": + pd_config = PDConfig(yaml_file="./test/bert_config.yaml") + pd_config += ("my_age", int, 18, "I am forever 18.") + pd_config.build() + + print(pd_config.do_train) + print(pd_config.hidden_size) + print(pd_config.my_age) diff --git a/build/lib/paddlepalm/utils/print_helper.py b/build/lib/paddlepalm/utils/print_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..842e77947410bd760d1b61c1cc654f294785187e --- /dev/null +++ b/build/lib/paddlepalm/utils/print_helper.py @@ -0,0 +1,31 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +MAXLEN = 70 +def print_dict(dic, title=""): + + if title: + title = ' ' + title + ' ' + left_len = (MAXLEN - len(title)) // 2 + title = '-' * left_len + title + right_len = MAXLEN - len(title) + title = title + '-' * right_len + else: + title = '-' * MAXLEN + print(title) + for name in dic: + print("{: <25}\t{}".format(str(name), str(dic[name]))) + print("") + # print("-" * MAXLEN + '\n') diff --git a/build/lib/paddlepalm/utils/reader_helper.py b/build/lib/paddlepalm/utils/reader_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..0124e63510e1b4a0ac6486980add758ffc8cacfa --- /dev/null +++ b/build/lib/paddlepalm/utils/reader_helper.py @@ -0,0 +1,226 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys +import random +import numpy as np +import paddle +from paddle import fluid +from paddle.fluid import layers + + +def _check_and_adapt_shape_dtype(rt_val, attr): + if not isinstance(rt_val, np.ndarray): + rt_val = np.array(rt_val) + assert rt_val.dtype != np.dtype('O'), "yielded data is not a valid tensor(number of elements on some dimension may differ)." + if rt_val.dtype == np.dtype('float64'): + rt_val = rt_val.astype('float32') + + shape, dtype = attr + assert rt_val.dtype == np.dtype(dtype), "yielded data type not consistent with attr settings." + assert len(shape) == rt_val.ndim, "yielded data rank(ndim) not consistent with attr settings." + for rt, exp in zip(rt_val.shape, shape): + if exp is None or exp < 0: + continue + assert rt == exp, "yielded data shape is not consistent with attr settings.\nExpected:{}\nActual:{}".format(exp, rt) + return rt_val + + +def _zero_batch(attrs): + pos_attrs = [] + for shape, dtype in attrs: + pos_shape = [size if size and size > 0 else 1 for size in shape] + pos_attrs.append([pos_shape, dtype]) + + return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs] + + +def _zero_batch_x(attrs, batch_size): + pos_attrs = [] + for shape, dtype in attrs: + # pos_shape = [size if size and size > 0 else 5 for size in shape] + pos_shape = [size for size in shape] + if pos_shape[0] == -1: + pos_shape[0] = batch_size + if pos_shape[1] == -1: + pos_shape[1] = 512 # max seq len + pos_attrs.append([pos_shape, dtype]) + + return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs] + + +def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n_prefetch=1): + inputs = [] + ret = {} + for name, shape, dtype in input_attrs: + p = layers.data(name, shape=shape, dtype=dtype) + ret[name] = p + inputs.append(p) + + if async: + assert iterator_fn is not None, "iterator_fn is needed for building async input layer." + reader = fluid.io.PyReader(inputs, capacity=dev_count*n_prefetch, iterable=False) + reader.decorate_batch_generator(iterator_fn) + reader.start() + + return ret + + +def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0): + + def iterator(): + v = verbose + while True: + results = _zero_batch(shape_and_dtypes) + + outputs = next(iterator) # dict type + prefix = iterator_prefixe + for outname, val in outputs.items(): + task_outname = prefix + '/' + outname + + if outname in outname_to_pos: + idx = outname_to_pos[outname] + val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) + results[idx] = val + + if task_outname in outname_to_pos: + idx = outname_to_pos[task_outname] + val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) + results[idx] = val + + yield results + + return iterator + + +def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0, batch_size=None): + """ + joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查 + """ + + task_ids = range(len(iterators)) + weights = [mr / float(sum(mrs)) for mr in mrs] + if not keep_one_task: + dev_count = 1 + + # build fake batch + # 注意这种方法会导致一个问题,用户将某任务的mix ratio设置成0后,并不能避免从该任务上读数据,若用户将数据集删掉则会导致崩溃;不过相比之前的zero batch方法,这种方法不必作出只能有一个size=-1的维度且第0维的-1必须是batch size的假设 + results = _zero_batch(joint_shape_and_dtypes) + outbuf = {} + for id in task_ids: + outputs = next(iterators[id]) # dict type + outbuf[id] = outputs + prefix = iterator_prefixes[id] + for outname, val in outputs.items(): + task_outname = prefix + '/' + outname + + if outname in outname_to_pos: + idx = outname_to_pos[outname] + val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) + results[idx] = val + + if task_outname in outname_to_pos: + idx = outname_to_pos[task_outname] + val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) + results[idx] = val + + fake_batch = results + dev_count_bak = dev_count + + def iterator(): + v = verbose + while True: + id = np.random.choice(task_ids, p=weights) + results = fake_batch + if v > 0: + print('----- debug joint iterator -----') + print('sampled task id: '+str(id)) + task_id_tensor = np.array([[id]]).astype("int64") + results[0] = task_id_tensor + + for i in range(dev_count): + # results = _zero_batch(joint_shape_and_dtypes, batch_size=batch_size) + # results[0] = task_id_tensor + if id in outbuf: + outputs = outbuf[id] + del outbuf[id] + else: + outputs = next(iterators[id]) # dict type + + prefix = iterator_prefixes[id] + for outname, val in outputs.items(): + if v > 0: + print('reader generate: '+outname) + task_outname = prefix + '/' + outname + + if outname in outname_to_pos: + idx = outname_to_pos[outname] + if v > 0: + print(outname + ' is insert in idx ' + str(idx)) + val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) + results[idx] = val + + if task_outname in outname_to_pos: + idx = outname_to_pos[task_outname] + if v > 0: + print(task_outname + ' is insert in idx ' + str(idx)) + val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) + results[idx] = val + + if v > 0: + print('yielded batch len and shapes:') + print(len(results)) + for i in results: + print(np.shape(i)) + print('') + v -= 1 + yield results + + return iterator + + +def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True): + """ + Args: + task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks + """ + if isinstance(task_attrs, dict): + task_attrs = [task_attrs] + + if insert_taskid: + ret = [([1,1], 'int64')] + names = ['__task_id'] + start = 1 + else: + ret = [] + names = [] + start = 0 + + names += sorted(backbone_attr.keys()) + ret.extend([backbone_attr[k] for k in names[start:]]) + name_to_position = {} + # pos=0 is for task_id, thus we start from 1 + for pos, k in enumerate(names): + name_to_position[k] = pos + for task_attr in task_attrs: + task_names = sorted(task_attr.keys()) + names.extend(task_names) + ret.extend([task_attr[k] for k in task_names]) + for pos, k in enumerate(task_names, start=len(name_to_position)): + name_to_position[k] = pos + return names, ret, name_to_position + + diff --git a/build/lib/paddlepalm/utils/saver.py b/build/lib/paddlepalm/utils/saver.py new file mode 100644 index 0000000000000000000000000000000000000000..ffc3f0da3c38d11a2aa770d8ad944509b6863a1d --- /dev/null +++ b/build/lib/paddlepalm/utils/saver.py @@ -0,0 +1,65 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import print_function + +import os +import six +import ast +import copy + +import numpy as np +import paddle.fluid as fluid + +def init_checkpoint(exe, init_checkpoint_path, main_program, skip_list = []): + assert os.path.exists( + init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path + + def existed_persitables(var): + if not fluid.io.is_persistable(var): + return False + if var.name in skip_list: + return False + return os.path.exists(os.path.join(init_checkpoint_path, var.name)) + + fluid.io.load_vars( + exe, + init_checkpoint_path, + main_program=main_program, + predicate=existed_persitables) + print("Load model from {}".format(init_checkpoint_path)) + + +def init_pretraining_params(exe, + pretraining_params_path, + main_program): + assert os.path.exists(pretraining_params_path + ), "[%s] cann't be found." % pretraining_params_path + + def existed_params(var): + if not isinstance(var, fluid.framework.Parameter): + return False + return os.path.exists(os.path.join(pretraining_params_path, var.name)) + + print("Load pretraining parameters from {}...\n".format( + pretraining_params_path)) + + fluid.io.load_vars( + exe, + pretraining_params_path, + main_program=main_program, + predicate=existed_params) + + diff --git a/build/lib/paddlepalm/utils/textprocess_helper.py b/build/lib/paddlepalm/utils/textprocess_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..35607ec939d014887e2ca6e63b85b3aa4371de9f --- /dev/null +++ b/build/lib/paddlepalm/utils/textprocess_helper.py @@ -0,0 +1,19 @@ +# -*- coding: UTF-8 -*- +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +def is_whitespace(c): + if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: + return True + return False diff --git a/dist/paddle_palm-1.2-py2.7.egg b/dist/paddle_palm-1.2-py2.7.egg new file mode 100644 index 0000000000000000000000000000000000000000..6e95d54e1c862d4ab6c0e77fa25308e3f119fc7f Binary files /dev/null and b/dist/paddle_palm-1.2-py2.7.egg differ diff --git a/paddle_palm.egg-info/PKG-INFO b/paddle_palm.egg-info/PKG-INFO new file mode 100644 index 0000000000000000000000000000000000000000..90c7ea1002458c26f570106b11f18df71c87716b --- /dev/null +++ b/paddle_palm.egg-info/PKG-INFO @@ -0,0 +1,105 @@ +Metadata-Version: 1.1 +Name: paddle-palm +Version: 1.2 +Summary: A Multi-task Learning Lib for PaddlePaddle Users. +Home-page: https://github.com/PaddlePadd +Author: PaddlePaddle +Author-email: zhangyiming04@baidu.com +License: Apache 2.0 +Description-Content-Type: text/markdown +Description: + # 多任务学习框架PaddlePALM + + # 安装 + pip install paddlepalm + + # 使用 + + ### 1. 创建任务实例 + + 使用yaml格式描述任务实例,每个任务实例中的必选字段包括 + + - train_file: 训练集文件路径 + - reader: 数据集载入与处理工具名,框架预置reader列表见[这里](https://www.baidu.com/) + - backbone: 骨架模型名,框架预置reader列表见[这里](https://www.baidu.com/) + - paradigm: 任务范式(类型)名,框架预置paradigm列表见[这里](https://www.baidu.com/) + + ### 2. 完成训练配置 + + 使用yaml格式完成配置多任务学习中的相关参数,如指定任务实例及其相关的主辅关系、参数复用关系、采样权重等 + + ### 3. 开始训练 + + ```python + + import paddlepalm as palm + + if __name__ == '__main__': + controller = palm.Controller('config.yaml', task_dir='task_instance') + controller.load_pretrain('pretrain_model/ernie/params') + controller.train() + ``` + + ### 4. 预测 + + 用户可在训练结束后直接调用pred接口对某个目标任务进行预测 + + 示例: + ```python + import paddlepalm as palm + + if __name__ == '__main__': + controller = palm.Controller(config_path='config.yaml', task_dir='task_instance') + controller.load_pretrain('pretrain_model/ernie/params') + controller.train() + controller.pred('mrqa') + ``` + + 也可新建controller直接预测 + + ```python + import paddlepalm as palm + + if __name__ == '__main__': + controller = palm.Controller(config_path='config.yaml', task_dir='task_instance') + controller.pred('mrqa', infermodel_path='output_model/firstrun2/infer_model') + ``` + + + # 运行机制 + + ### 多任务学习机制 + pass + + ### 训练终止机制 + + - 默认的设置: + - **所有target任务达到目标训练步数后多任务学习停止** + - 未设置成target任务的任务(即辅助任务)不会影响训练终止与否,只是担任”陪训“的角色 + - 注:默认所有的任务都是target任务,用户可以通过`target_tag`来标记目标/辅助任务 + - 每个目标任务的目标训练步数由num_epochs和mix_ratio计算得到 + + ### 保存机制 + + - 默认的设置: + - 训练过程中,保存下来的模型分为checkpoint (ckpt)和inference model (infermodel)两种: + - ckpt保存的是包含所有任务的总计算图(即整个多任务学习计算图),用于训练中断恢复 + - infermodel保存的是某个目标任务的推理计算图和推理依赖的相关配置 + - 对于每个target任务,训练到预期的步数后自动保存inference model,之后不再保存。(注:保存inference model不影响ckpt的保存) + - 用户可改配置 + - 使用`save_ckpt_every_steps`来控制保存ckpt的频率,默认不保存 + - 每个task instance均可使用`save_infermodel_every_steps`来控制该task保存infermodel的频率,默认为-1,即只在达到目标训练步数时保存一下 + + + + +Keywords: paddlepaddle,paddle,multi-task-learning +Platform: any +Classifier: License :: OSI Approved :: Apache Software License +Classifier: Programming Language :: Python +Classifier: Programming Language :: Python :: 2 +Classifier: Programming Language :: Python :: 2.7 +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.5 +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 diff --git a/paddle_palm.egg-info/SOURCES.txt b/paddle_palm.egg-info/SOURCES.txt new file mode 100644 index 0000000000000000000000000000000000000000..1f1a25f7fee1748a4e8e6ce92654396c51cbc218 --- /dev/null +++ b/paddle_palm.egg-info/SOURCES.txt @@ -0,0 +1,47 @@ +README.md +setup.cfg +setup.py +./paddlepalm/__init__.py +./paddlepalm/default_settings.py +./paddlepalm/interface.py +./paddlepalm/mtl_controller.py +./paddlepalm/task_instance.py +./paddlepalm/backbone/__init__.py +./paddlepalm/backbone/bert.py +./paddlepalm/backbone/bow.py +./paddlepalm/backbone/ernie.py +./paddlepalm/backbone/utils/__init__.py +./paddlepalm/backbone/utils/transformer.py +./paddlepalm/optimizer/__init__.py +./paddlepalm/optimizer/adam.py +./paddlepalm/reader/__init__.py +./paddlepalm/reader/cls4bert.py +./paddlepalm/reader/match4ernie.py +./paddlepalm/reader/mlm.py +./paddlepalm/reader/mrc4bert.py +./paddlepalm/reader/mrc4ernie.py +./paddlepalm/reader/utils/__init__.py +./paddlepalm/reader/utils/batching4bert.py +./paddlepalm/reader/utils/batching4ernie.py +./paddlepalm/reader/utils/mlm_batching.py +./paddlepalm/reader/utils/mrqa_helper.py +./paddlepalm/reader/utils/reader4ernie.py +./paddlepalm/task_paradigm/__init__.py +./paddlepalm/task_paradigm/cls.py +./paddlepalm/task_paradigm/match.py +./paddlepalm/task_paradigm/mlm.py +./paddlepalm/task_paradigm/mrc.py +./paddlepalm/tokenizer/__init__.py +./paddlepalm/tokenizer/bert_tokenizer.py +./paddlepalm/tokenizer/ernie_tokenizer.py +./paddlepalm/utils/__init__.py +./paddlepalm/utils/config_helper.py +./paddlepalm/utils/print_helper.py +./paddlepalm/utils/reader_helper.py +./paddlepalm/utils/saver.py +./paddlepalm/utils/textprocess_helper.py +paddle_palm.egg-info/PKG-INFO +paddle_palm.egg-info/SOURCES.txt +paddle_palm.egg-info/dependency_links.txt +paddle_palm.egg-info/not-zip-safe +paddle_palm.egg-info/top_level.txt \ No newline at end of file diff --git a/paddle_palm.egg-info/dependency_links.txt b/paddle_palm.egg-info/dependency_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/paddle_palm.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/paddle_palm.egg-info/not-zip-safe b/paddle_palm.egg-info/not-zip-safe new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/paddle_palm.egg-info/not-zip-safe @@ -0,0 +1 @@ + diff --git a/paddle_palm.egg-info/top_level.txt b/paddle_palm.egg-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..b136828ddfaeda7bebad3ba3dddb3c77482b051f --- /dev/null +++ b/paddle_palm.egg-info/top_level.txt @@ -0,0 +1 @@ +paddlepalm diff --git a/paddlepalm/mtl_controller.py b/paddlepalm/mtl_controller.py index 35500244cf27011bf03c2207d7c7f88280c92d7d..0b9ab1d563f8f1072dd839de3deb0eefe7ea13db 100755 --- a/paddlepalm/mtl_controller.py +++ b/paddlepalm/mtl_controller.py @@ -626,7 +626,8 @@ class Controller(object): rt_outputs = self.exe.run(train_program, fetch_list=fetch_list) rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)} rt_task_id = np.squeeze(rt_outputs['__task_id']).tolist() - assert (not isinstance(rt_task_id, list)) or len(set(rt_task_id)) == 1, rt_task_id + # 注意注释掉这一行之后,训练日志实际是错误的 + # assert (not isinstance(rt_task_id, list)) or len(set(rt_task_id)) == 1, rt_task_id rt_task_id = rt_task_id[0] if isinstance(rt_task_id, list) else rt_task_id cur_task = instances[rt_task_id] diff --git a/paddlepalm/utils/reader_helper.py b/paddlepalm/utils/reader_helper.py index 0124e63510e1b4a0ac6486980add758ffc8cacfa..e8e396adc5dc27d4637e137344efff019f0e2eb1 100644 --- a/paddlepalm/utils/reader_helper.py +++ b/paddlepalm/utils/reader_helper.py @@ -72,7 +72,8 @@ def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n if async: assert iterator_fn is not None, "iterator_fn is needed for building async input layer." - reader = fluid.io.PyReader(inputs, capacity=dev_count*n_prefetch, iterable=False) + # reader = fluid.io.PyReader(inputs, capacity=dev_count*n_prefetch, iterable=False) + reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False) reader.decorate_batch_generator(iterator_fn) reader.start() @@ -153,7 +154,7 @@ def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtype for i in range(dev_count): # results = _zero_batch(joint_shape_and_dtypes, batch_size=batch_size) - # results[0] = task_id_tensor + results[0] = task_id_tensor if id in outbuf: outputs = outbuf[id] del outbuf[id] diff --git a/run_demo1.sh b/run_demo1.sh index d6d30cae1ee04df82d20d1195ea039f865443f1a..3f3d8ecf634c9cfd8328132f75b6357c784bdc9a 100755 --- a/run_demo1.sh +++ b/run_demo1.sh @@ -1,6 +1,4 @@ -export CUDA_VISIBLE_DEVICES=0,1,2,3 -export FLAGS_fraction_of_gpu_memory_to_use=0.1 -export FLAGS_eager_delete_tensor_gb=0 +export CUDA_VISIBLE_DEVICES=0 python demo1.py diff --git a/run_demo2.sh b/run_demo2.sh index ca69529f8b0e9dad12e862eab819bc06c83f293d..e0a085219ec4026885222d67401d8eb34aeb5197 100755 --- a/run_demo2.sh +++ b/run_demo2.sh @@ -1,6 +1,4 @@ -export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 -export FLAGS_fraction_of_gpu_memory_to_use=0.1 -export FLAGS_eager_delete_tensor_gb=0 +export CUDA_VISIBLE_DEVICES=0,1,2,3 python demo2.py