From e180d15b5d87d8e694391955b52d4a5ca64617cc Mon Sep 17 00:00:00 2001 From: xixiaoyao Date: Mon, 28 Oct 2019 19:23:57 +0800 Subject: [PATCH] add bert --- build/lib/paddlepalm/__init__.py | 5 - build/lib/paddlepalm/backbone/__init__.py | 0 build/lib/paddlepalm/backbone/bert.py | 156 --- build/lib/paddlepalm/backbone/ernie.py | 175 ---- .../lib/paddlepalm/backbone/utils/__init__.py | 0 .../paddlepalm/backbone/utils/transformer.py | 341 ------ build/lib/paddlepalm/default_settings.py | 42 - build/lib/paddlepalm/interface.py | 173 --- build/lib/paddlepalm/mtl_controller.py | 724 ------------- build/lib/paddlepalm/optimizer/__init__.py | 0 build/lib/paddlepalm/optimizer/adam.py | 103 -- build/lib/paddlepalm/reader/__init__.py | 0 build/lib/paddlepalm/reader/cls4bert.py | 0 build/lib/paddlepalm/reader/match.py | 103 -- build/lib/paddlepalm/reader/match4ernie.py | 103 -- build/lib/paddlepalm/reader/mlm.py | 93 -- build/lib/paddlepalm/reader/mrc4bert.py | 656 ------------ build/lib/paddlepalm/reader/mrc4ernie.py | 119 --- build/lib/paddlepalm/reader/utils/__init__.py | 0 .../paddlepalm/reader/utils/batching4bert.py | 184 ---- .../paddlepalm/reader/utils/batching4ernie.py | 175 ---- .../paddlepalm/reader/utils/mlm_batching.py | 177 ---- .../paddlepalm/reader/utils/mrqa_helper.py | 84 -- .../paddlepalm/reader/utils/reader4ernie.py | 982 ------------------ build/lib/paddlepalm/task_instance.py | 288 ----- .../lib/paddlepalm/task_paradigm/__init__.py | 0 build/lib/paddlepalm/task_paradigm/cls.py | 60 -- build/lib/paddlepalm/task_paradigm/match.py | 70 -- build/lib/paddlepalm/task_paradigm/mlm.py | 115 -- build/lib/paddlepalm/task_paradigm/mrc.py | 486 --------- build/lib/paddlepalm/tokenizer/__init__.py | 0 .../paddlepalm/tokenizer/bert_tokenizer.py | 374 ------- .../paddlepalm/tokenizer/ernie_tokenizer.py | 417 -------- build/lib/paddlepalm/utils/__init__.py | 0 build/lib/paddlepalm/utils/config_helper.py | 311 ------ build/lib/paddlepalm/utils/print_helper.py | 31 - build/lib/paddlepalm/utils/reader_helper.py | 226 ---- build/lib/paddlepalm/utils/saver.py | 80 -- .../paddlepalm/utils/textprocess_helper.py | 19 - dist/paddle_palm-1.2-py2.7.egg | Bin 166800 -> 0 bytes paddle_palm.egg-info/PKG-INFO | 105 -- paddle_palm.egg-info/SOURCES.txt | 47 - paddle_palm.egg-info/dependency_links.txt | 1 - paddle_palm.egg-info/not-zip-safe | 1 - paddle_palm.egg-info/top_level.txt | 1 - 45 files changed, 7027 deletions(-) delete mode 100644 build/lib/paddlepalm/__init__.py delete mode 100644 build/lib/paddlepalm/backbone/__init__.py delete mode 100644 build/lib/paddlepalm/backbone/bert.py delete mode 100644 build/lib/paddlepalm/backbone/ernie.py delete mode 100644 build/lib/paddlepalm/backbone/utils/__init__.py delete mode 100644 build/lib/paddlepalm/backbone/utils/transformer.py delete mode 100644 build/lib/paddlepalm/default_settings.py delete mode 100644 build/lib/paddlepalm/interface.py delete mode 100644 build/lib/paddlepalm/mtl_controller.py delete mode 100644 build/lib/paddlepalm/optimizer/__init__.py delete mode 100644 build/lib/paddlepalm/optimizer/adam.py delete mode 100644 build/lib/paddlepalm/reader/__init__.py delete mode 100644 build/lib/paddlepalm/reader/cls4bert.py delete mode 100644 build/lib/paddlepalm/reader/match.py delete mode 100644 build/lib/paddlepalm/reader/match4ernie.py delete mode 100644 build/lib/paddlepalm/reader/mlm.py delete mode 100644 build/lib/paddlepalm/reader/mrc4bert.py delete mode 100644 build/lib/paddlepalm/reader/mrc4ernie.py delete mode 100644 build/lib/paddlepalm/reader/utils/__init__.py delete mode 100644 build/lib/paddlepalm/reader/utils/batching4bert.py delete mode 100644 build/lib/paddlepalm/reader/utils/batching4ernie.py delete mode 100644 build/lib/paddlepalm/reader/utils/mlm_batching.py delete mode 100644 build/lib/paddlepalm/reader/utils/mrqa_helper.py delete mode 100644 build/lib/paddlepalm/reader/utils/reader4ernie.py delete mode 100644 build/lib/paddlepalm/task_instance.py delete mode 100644 build/lib/paddlepalm/task_paradigm/__init__.py delete mode 100644 build/lib/paddlepalm/task_paradigm/cls.py delete mode 100644 build/lib/paddlepalm/task_paradigm/match.py delete mode 100644 build/lib/paddlepalm/task_paradigm/mlm.py delete mode 100644 build/lib/paddlepalm/task_paradigm/mrc.py delete mode 100644 build/lib/paddlepalm/tokenizer/__init__.py delete mode 100644 build/lib/paddlepalm/tokenizer/bert_tokenizer.py delete mode 100644 build/lib/paddlepalm/tokenizer/ernie_tokenizer.py delete mode 100644 build/lib/paddlepalm/utils/__init__.py delete mode 100644 build/lib/paddlepalm/utils/config_helper.py delete mode 100644 build/lib/paddlepalm/utils/print_helper.py delete mode 100644 build/lib/paddlepalm/utils/reader_helper.py delete mode 100644 build/lib/paddlepalm/utils/saver.py delete mode 100644 build/lib/paddlepalm/utils/textprocess_helper.py delete mode 100644 dist/paddle_palm-1.2-py2.7.egg delete mode 100644 paddle_palm.egg-info/PKG-INFO delete mode 100644 paddle_palm.egg-info/SOURCES.txt delete mode 100644 paddle_palm.egg-info/dependency_links.txt delete mode 100644 paddle_palm.egg-info/not-zip-safe delete mode 100644 paddle_palm.egg-info/top_level.txt diff --git a/build/lib/paddlepalm/__init__.py b/build/lib/paddlepalm/__init__.py deleted file mode 100644 index c7b42da..0000000 --- a/build/lib/paddlepalm/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ - -import sys -from paddlepalm.mtl_controller import Controller -sys.path.append('paddlepalm') - diff --git a/build/lib/paddlepalm/backbone/__init__.py b/build/lib/paddlepalm/backbone/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/backbone/bert.py b/build/lib/paddlepalm/backbone/bert.py deleted file mode 100644 index 7f48109..0000000 --- a/build/lib/paddlepalm/backbone/bert.py +++ /dev/null @@ -1,156 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""v1.1 -BERT model.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from paddle import fluid -from paddle.fluid import layers - -from paddlepalm.backbone.utils.transformer import pre_process_layer, encoder -from paddlepalm.interface import backbone - - -class Model(backbone): - - def __init__(self, config, phase): - - # self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变 - self._emb_size = config["hidden_size"] - self._n_layer = config["num_hidden_layers"] - self._n_head = config["num_attention_heads"] - self._voc_size = config["vocab_size"] - self._max_position_seq_len = config["max_position_embeddings"] - self._sent_types = config["type_vocab_size"] - self._hidden_act = config["hidden_act"] - self._prepostprocess_dropout = config["hidden_dropout_prob"] - self._attention_dropout = config["attention_probs_dropout_prob"] - - self.model_name = model_name - - self._word_emb_name = self.model_name + "word_embedding" - self._pos_emb_name = self.model_name + "pos_embedding" - self._sent_emb_name = self.model_name + "sent_embedding" - - # Initialize all weigths by truncated normal initializer, and all biases - # will be initialized by constant zero by default. - self._param_initializer = fluid.initializer.TruncatedNormal( - scale=config["initializer_range"]) - - @property - def inputs_attr(self): - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32']} - - @property - def outputs_attr(self): - return {"word_embedding": [[-1, -1, self._emb_size], 'float32'], - "encoder_outputs": [[-1, -1, self._emb_size], 'float32'], - "sentence_embedding": [[-1, self._emb_size], 'float32'], - "sentence_pair_embedding": [[-1, self._emb_size], 'float32']} - - def build(self, inputs): - src_ids = inputs['token_ids'] - pos_ids = inputs['position_ids'] - sent_ids = inputs['segment_ids'] - input_mask = inputs['input_mask'] - # padding id in vocabulary must be set to 0 - emb_out = layers.embedding( - input=src_ids, - size=[self._voc_size, self._emb_size], - dtype="float32", - param_attr=fluid.ParamAttr( - name=self._word_emb_name, initializer=self._param_initializer), - is_sparse=False) - - self.emb_out = emb_out - - position_emb_out = layers.embedding( - input=pos_ids, - size=[self._max_position_seq_len, self._emb_size], - dtype="float32", - param_attr=fluid.ParamAttr( - name=self._pos_emb_name, initializer=self._param_initializer)) - - self.position_emb_out = position_emb_out - - sent_emb_out = layers.embedding( - sent_ids, - size=[self._sent_types, self._emb_size], - dtype="float32" - param_attr=fluid.ParamAttr( - name=self._sent_emb_name, initializer=self._param_initializer)) - - self.sent_emb_out = sent_emb_out - - emb_out = emb_out + position_emb_out + sent_emb_out - - emb_out = pre_process_layer( - emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder') - - self_attn_mask = layers.matmul( - x = input_mask, y = input_mask, transpose_y = True) - - self_attn_mask = layers.scale( - x = self_attn_mask, scale = 10000.0, bias = -1.0, bias_after_scale = False) - - n_head_self_attn_mask = layers.stack( - x=[self_attn_mask] * self._n_head, axis=1) - - n_head_self_attn_mask.stop_gradient = True - - enc_out = encoder( - enc_input = emb_out, - attn_bias = n_head_self_attn_mask, - n_layer = self._n_layer, - n_head = self._n_head, - d_key = self._emb_size // self._n_head, - d_value = self._emb_size // self._n_head, - d_model = self._emb_size, - d_inner_hid = self._emb_size * 4, - prepostprocess_dropout = self._prepostprocess_dropout, - attention_dropout = self._attention_dropout, - relu_dropout = 0, - hidden_act = self._hidden_act, - preprocess_cmd = "", - postprocess_cmd = "dan", - param_initializer = self._param_initializer, - name = self.model_name + 'encoder') - - next_sent_feat = layers.slice( - input = enc_out, axes = [1], starts = [0], ends = [1]) - next_sent_feat = layers.fc( - input = next_sent_feat, - size = self._emb_size, - act = "tanh", - param_attr = fluid.ParamAttr( - name = self.model_name + "pooled_fc.w_0", - initializer = self._param_initializer), - bias_attr = "pooled_fc.b_0") - - return {'word_embedding': emb_out, - 'encoder_outputs': enc_out, - 'sentence_embedding': next_sent_feat, - 'sentence_pair_embedding': next_sent_feat} - - def postprocess(self, rt_outputs): - pass - - diff --git a/build/lib/paddlepalm/backbone/ernie.py b/build/lib/paddlepalm/backbone/ernie.py deleted file mode 100644 index 1e47153..0000000 --- a/build/lib/paddlepalm/backbone/ernie.py +++ /dev/null @@ -1,175 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Ernie model.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from __future__ import unicode_literals -from __future__ import absolute_import - -from paddle import fluid -from paddle.fluid import layers - -from paddlepalm.backbone.utils.transformer import pre_process_layer, encoder -from paddlepalm.interface import backbone - - -class Model(backbone): - - def __init__(self, - config, - phase): - - # self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变 - - self._emb_size = config['hidden_size'] - self._n_layer = config['num_hidden_layers'] - self._n_head = config['num_attention_heads'] - self._voc_size = config['vocab_size'] - self._max_position_seq_len = config['max_position_embeddings'] - if config['sent_type_vocab_size']: - self._sent_types = config['sent_type_vocab_size'] - else: - self._sent_types = config['type_vocab_size'] - - self._task_types = config['task_type_vocab_size'] - - self._hidden_act = config['hidden_act'] - self._prepostprocess_dropout = config['hidden_dropout_prob'] - self._attention_dropout = config['attention_probs_dropout_prob'] - - self._word_emb_name = "word_embedding" - self._pos_emb_name = "pos_embedding" - self._sent_emb_name = "sent_embedding" - self._task_emb_name = "task_embedding" - self._emb_dtype = "float32" - - self._param_initializer = fluid.initializer.TruncatedNormal( - scale=config['initializer_range']) - - @property - def inputs_attr(self): - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'], - "task_ids": [[-1,-1, 1], 'int64']} - - @property - def outputs_attr(self): - return {"word_embedding": [[-1, -1, self._emb_size], 'float32'], - "embedding_table": [[-1, self._voc_size, self._emb_size], 'float32'], - "encoder_outputs": [[-1, -1, self._emb_size], 'float32'], - "sentence_embedding": [[-1, self._emb_size], 'float32'], - "sentence_pair_embedding": [[-1, self._emb_size], 'float32']} - - def build(self, inputs, scope_name=""): - - src_ids = inputs['token_ids'] - pos_ids = inputs['position_ids'] - sent_ids = inputs['segment_ids'] - input_mask = inputs['input_mask'] - task_ids = inputs['task_ids'] - - # padding id in vocabulary must be set to 0 - emb_out = fluid.layers.embedding( - input=src_ids, - size=[self._voc_size, self._emb_size], - dtype=self._emb_dtype, - param_attr=fluid.ParamAttr( - name=scope_name+self._word_emb_name, initializer=self._param_initializer), - is_sparse=False) - - # fluid.global_scope().find_var('backbone-word_embedding').get_tensor() - embedding_table = fluid.default_main_program().global_block().var(scope_name+self._word_emb_name) - - position_emb_out = fluid.layers.embedding( - input=pos_ids, - size=[self._max_position_seq_len, self._emb_size], - dtype=self._emb_dtype, - param_attr=fluid.ParamAttr( - name=scope_name+self._pos_emb_name, initializer=self._param_initializer)) - - sent_emb_out = fluid.layers.embedding( - sent_ids, - size=[self._sent_types, self._emb_size], - dtype=self._emb_dtype, - param_attr=fluid.ParamAttr( - name=scope_name+self._sent_emb_name, initializer=self._param_initializer)) - - emb_out = emb_out + position_emb_out - emb_out = emb_out + sent_emb_out - - task_emb_out = fluid.layers.embedding( - task_ids, - size=[self._task_types, self._emb_size], - dtype=self._emb_dtype, - param_attr=fluid.ParamAttr( - name=scope_name+self._task_emb_name, - initializer=self._param_initializer)) - - emb_out = emb_out + task_emb_out - - emb_out = pre_process_layer( - emb_out, 'nd', self._prepostprocess_dropout, name=scope_name+'pre_encoder') - - self_attn_mask = fluid.layers.matmul( - x=input_mask, y=input_mask, transpose_y=True) - - self_attn_mask = fluid.layers.scale( - x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False) - n_head_self_attn_mask = fluid.layers.stack( - x=[self_attn_mask] * self._n_head, axis=1) - n_head_self_attn_mask.stop_gradient = True - - enc_out = encoder( - enc_input=emb_out, - attn_bias=n_head_self_attn_mask, - n_layer=self._n_layer, - n_head=self._n_head, - d_key=self._emb_size // self._n_head, - d_value=self._emb_size // self._n_head, - d_model=self._emb_size, - d_inner_hid=self._emb_size * 4, - prepostprocess_dropout=self._prepostprocess_dropout, - attention_dropout=self._attention_dropout, - relu_dropout=0, - hidden_act=self._hidden_act, - preprocess_cmd="", - postprocess_cmd="dan", - param_initializer=self._param_initializer, - name=scope_name+'encoder') - - - next_sent_feat = fluid.layers.slice( - input=enc_out, axes=[1], starts=[0], ends=[1]) - next_sent_feat = fluid.layers.reshape(next_sent_feat, [-1, next_sent_feat.shape[-1]]) - next_sent_feat = fluid.layers.fc( - input=next_sent_feat, - size=self._emb_size, - act="tanh", - param_attr=fluid.ParamAttr( - name=scope_name+"pooled_fc.w_0", initializer=self._param_initializer), - bias_attr=scope_name+"pooled_fc.b_0") - - return {'embedding_table': embedding_table, - 'word_embedding': emb_out, - 'encoder_outputs': enc_out, - 'sentence_embedding': next_sent_feat, - 'sentence_pair_embedding': next_sent_feat} - - def postprocess(self, rt_outputs): - pass diff --git a/build/lib/paddlepalm/backbone/utils/__init__.py b/build/lib/paddlepalm/backbone/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/backbone/utils/transformer.py b/build/lib/paddlepalm/backbone/utils/transformer.py deleted file mode 100644 index d5aa5c7..0000000 --- a/build/lib/paddlepalm/backbone/utils/transformer.py +++ /dev/null @@ -1,341 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Transformer encoder.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from functools import partial - -import paddle.fluid as fluid -import paddle.fluid.layers as layers - -def multi_head_attention(queries, - keys, - values, - attn_bias, - d_key, - d_value, - d_model, - n_head=1, - dropout_rate=0., - cache=None, - param_initializer=None, - name='multi_head_att'): - """ - Multi-Head Attention. Note that attn_bias is added to the logit before - computing softmax activiation to mask certain selected positions so that - they will not considered in attention weights. - """ - keys = queries if keys is None else keys - values = keys if values is None else values - - if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): - raise ValueError( - "Inputs: quries, keys and values should all be 3-D tensors.") - - def __compute_qkv(queries, keys, values, n_head, d_key, d_value): - """ - Add linear projection to queries, keys, and values. - """ - q = layers.fc(input=queries, - size=d_key * n_head, - num_flatten_dims=2, - param_attr=fluid.ParamAttr( - name=name + '_query_fc.w_0', - initializer=param_initializer), - bias_attr=name + '_query_fc.b_0') - k = layers.fc(input=keys, - size=d_key * n_head, - num_flatten_dims=2, - param_attr=fluid.ParamAttr( - name=name + '_key_fc.w_0', - initializer=param_initializer), - bias_attr=name + '_key_fc.b_0') - v = layers.fc(input=values, - size=d_value * n_head, - num_flatten_dims=2, - param_attr=fluid.ParamAttr( - name=name + '_value_fc.w_0', - initializer=param_initializer), - bias_attr=name + '_value_fc.b_0') - return q, k, v - - def __split_heads(x, n_head): - """ - Reshape the last dimension of inpunt tensor x so that it becomes two - dimensions and then transpose. Specifically, input a tensor with shape - [bs, max_sequence_length, n_head * hidden_dim] then output a tensor - with shape [bs, n_head, max_sequence_length, hidden_dim]. - """ - hidden_size = x.shape[-1] - # The value 0 in shape attr means copying the corresponding dimension - # size of the input as the output dimension size. - reshaped = layers.reshape( - x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True) - - # permuate the dimensions into: - # [batch_size, n_head, max_sequence_len, hidden_size_per_head] - return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) - - def __combine_heads(x): - """ - Transpose and then reshape the last two dimensions of inpunt tensor x - so that it becomes one dimension, which is reverse to __split_heads. - """ - if len(x.shape) == 3: return x - if len(x.shape) != 4: - raise ValueError("Input(x) should be a 4-D Tensor.") - - trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) - # The value 0 in shape attr means copying the corresponding dimension - # size of the input as the output dimension size. - return layers.reshape( - x=trans_x, - shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]], - inplace=True) - - def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate): - """ - Scaled Dot-Product Attention - """ - scaled_q = layers.scale(x=q, scale=d_key**-0.5) - product = layers.matmul(x=scaled_q, y=k, transpose_y=True) - if attn_bias: - product += attn_bias - weights = layers.softmax(product) - if dropout_rate: - weights = layers.dropout( - weights, - dropout_prob=dropout_rate, - dropout_implementation="upscale_in_train", - is_test=False) - out = layers.matmul(weights, v) - return out - - q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) - - if cache is not None: # use cache and concat time steps - # Since the inplace reshape in __split_heads changes the shape of k and - # v, which is the cache input for next time step, reshape the cache - # input from the previous time step first. - k = cache["k"] = layers.concat( - [layers.reshape( - cache["k"], shape=[0, 0, d_model]), k], axis=1) - v = cache["v"] = layers.concat( - [layers.reshape( - cache["v"], shape=[0, 0, d_model]), v], axis=1) - - q = __split_heads(q, n_head) - k = __split_heads(k, n_head) - v = __split_heads(v, n_head) - - ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key, - dropout_rate) - - out = __combine_heads(ctx_multiheads) - - # Project back to the model size. - proj_out = layers.fc(input=out, - size=d_model, - num_flatten_dims=2, - param_attr=fluid.ParamAttr( - name=name + '_output_fc.w_0', - initializer=param_initializer), - bias_attr=name + '_output_fc.b_0') - return proj_out - - -def positionwise_feed_forward(x, - d_inner_hid, - d_hid, - dropout_rate, - hidden_act, - param_initializer=None, - name='ffn'): - """ - Position-wise Feed-Forward Networks. - This module consists of two linear transformations with a ReLU activation - in between, which is applied to each position separately and identically. - """ - hidden = layers.fc(input=x, - size=d_inner_hid, - num_flatten_dims=2, - act=hidden_act, - param_attr=fluid.ParamAttr( - name=name + '_fc_0.w_0', - initializer=param_initializer), - bias_attr=name + '_fc_0.b_0') - if dropout_rate: - hidden = layers.dropout( - hidden, - dropout_prob=dropout_rate, - dropout_implementation="upscale_in_train", - is_test=False) - out = layers.fc(input=hidden, - size=d_hid, - num_flatten_dims=2, - param_attr=fluid.ParamAttr( - name=name + '_fc_1.w_0', initializer=param_initializer), - bias_attr=name + '_fc_1.b_0') - return out - - -def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0., - name=''): - """ - Add residual connection, layer normalization and droput to the out tensor - optionally according to the value of process_cmd. - This will be used before or after multi-head attention and position-wise - feed-forward networks. - """ - for cmd in process_cmd: - if cmd == "a": # add residual connection - out = out + prev_out if prev_out else out - elif cmd == "n": # add layer normalization - out_dtype = out.dtype - if out_dtype == fluid.core.VarDesc.VarType.FP16: - out = layers.cast(x=out, dtype="float32") - out = layers.layer_norm( - out, - begin_norm_axis=len(out.shape) - 1, - param_attr=fluid.ParamAttr( - name=name + '_layer_norm_scale', - initializer=fluid.initializer.Constant(1.)), - bias_attr=fluid.ParamAttr( - name=name + '_layer_norm_bias', - initializer=fluid.initializer.Constant(0.))) - if out_dtype == fluid.core.VarDesc.VarType.FP16: - out = layers.cast(x=out, dtype="float16") - elif cmd == "d": # add dropout - if dropout_rate: - out = layers.dropout( - out, - dropout_prob=dropout_rate, - dropout_implementation="upscale_in_train", - is_test=False) - return out - - -pre_process_layer = partial(pre_post_process_layer, None) -post_process_layer = pre_post_process_layer - - -def encoder_layer(enc_input, - attn_bias, - n_head, - d_key, - d_value, - d_model, - d_inner_hid, - prepostprocess_dropout, - attention_dropout, - relu_dropout, - hidden_act, - preprocess_cmd="n", - postprocess_cmd="da", - param_initializer=None, - name=''): - """The encoder layers that can be stacked to form a deep encoder. - This module consits of a multi-head (self) attention followed by - position-wise feed-forward networks and both the two components companied - with the post_process_layer to add residual connection, layer normalization - and droput. - """ - attn_output = multi_head_attention( - pre_process_layer( - enc_input, - preprocess_cmd, - prepostprocess_dropout, - name=name + '_pre_att'), - None, - None, - attn_bias, - d_key, - d_value, - d_model, - n_head, - attention_dropout, - param_initializer=param_initializer, - name=name + '_multi_head_att') - attn_output = post_process_layer( - enc_input, - attn_output, - postprocess_cmd, - prepostprocess_dropout, - name=name + '_post_att') - ffd_output = positionwise_feed_forward( - pre_process_layer( - attn_output, - preprocess_cmd, - prepostprocess_dropout, - name=name + '_pre_ffn'), - d_inner_hid, - d_model, - relu_dropout, - hidden_act, - param_initializer=param_initializer, - name=name + '_ffn') - return post_process_layer( - attn_output, - ffd_output, - postprocess_cmd, - prepostprocess_dropout, - name=name + '_post_ffn') - - -def encoder(enc_input, - attn_bias, - n_layer, - n_head, - d_key, - d_value, - d_model, - d_inner_hid, - prepostprocess_dropout, - attention_dropout, - relu_dropout, - hidden_act, - preprocess_cmd="n", - postprocess_cmd="da", - param_initializer=None, - name=''): - """ - The encoder is composed of a stack of identical layers returned by calling - encoder_layer. - """ - for i in range(n_layer): - enc_output = encoder_layer( - enc_input, - attn_bias, - n_head, - d_key, - d_value, - d_model, - d_inner_hid, - prepostprocess_dropout, - attention_dropout, - relu_dropout, - hidden_act, - preprocess_cmd, - postprocess_cmd, - param_initializer=param_initializer, - name=name + '_layer_' + str(i)) - enc_input = enc_output - enc_output = pre_process_layer( - enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder") - - return enc_output diff --git a/build/lib/paddlepalm/default_settings.py b/build/lib/paddlepalm/default_settings.py deleted file mode 100644 index 4f003ea..0000000 --- a/build/lib/paddlepalm/default_settings.py +++ /dev/null @@ -1,42 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -BACKBONE_DIR='paddlepalm.backbone' -TASK_INSTANCE_DIR='paddlepalm.task_instance' -READER_DIR='paddlepalm.reader' -PARADIGM_DIR='paddlepalm.task_paradigm' -OPTIMIZER_DIR='paddlepalm.optimizer' -OPTIMIZE_METHOD='optimize' - -REQUIRED_ARGS={ - 'task_instance': str, - 'backbone': str, - 'optimizer': str, - 'learning_rate': float, - 'batch_size': int - } - -OPTIONAL_ARGS={ - 'mix_ratio': str, - 'target_tag': str, - 'reuse_rag': str - } - -TASK_REQUIRED_ARGS={ - 'paradigm': str, - 'reader': str, - 'train_file': str - } - diff --git a/build/lib/paddlepalm/interface.py b/build/lib/paddlepalm/interface.py deleted file mode 100644 index 06c93ac..0000000 --- a/build/lib/paddlepalm/interface.py +++ /dev/null @@ -1,173 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""v1.1""" - -class reader(object): - """interface of data manager.""" - - def __init__(self, config): - assert isinstance(config, dict) - - # @property - # def inputs_attr(self): - # """描述reader输入对象的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1. - # Return: - # dict类型。对各个输入对象的属性描述。例如, - # 对于文本分类任务,可能需要包含输入文本和所属标签的id - # {"text": ([], 'str'), - # "label": ([], 'int')} - # 对于标注任务,可能需要输入词序列和对应的标签 - # {"tokens", ([-1], 'str'), - # "tags", ([-1], 'str')} - # 对于机器阅读理解任务,可能需要包含上下文、问题、回答、答案区域的起止位置等 - # {"paragraph", ([], 'str'), - # "question", ([], 'str'), - # "start_position", ([], 'int') - # """ - # raise NotImplementedError() - - @property - def outputs_attr(self): - """描述reader输出对象(被yield出的对象)的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 - 注意:当使用mini-batch梯度下降学习策略时,,应为常规的输入对象设置batch_size维度(一般为-1) - Return: - dict类型。对各个输入对象的属性描述。例如, - 对于文本分类和匹配任务,yield的输出内容可能包含如下的对象(下游backbone和task可按需访问其中的对象) - {"token_ids": ([-1, max_len], 'int64'), - "input_ids": ([-1, max_len], 'int64'), - "segment_ids": ([-1, max_len], 'int64'), - "input_mask": ([-1, max_len], 'float32'), - "label": ([-1], 'int')} - """ - raise NotImplementedError() - - # def parse_line(self): - # """框架内部使用字典描述每个样本,字典的key为inputs_attr,value为每个input对应的符合attr描述的值。 - # 该函数负责将文本行解析成符合inputs_attr描述的字典类型的样本。默认的parse_line方法会读取json格式的数据集文件,数据集的每一行为json格式描述的样本。 - # 用户可通过对该方法的继承改写来适配不同格式的数据集,例如csv格式甚至tfrecord文件。 - # """ - # raise NotImplementedError() - # - # def tokenize(self, line): - # """框架中内置了word piece tokenizer等分词器,用户可通过修改tokenizer超参数来制定使用的分词器,若内置的分词器均无法满足需求,用户可通过对该方法的继承改写来自定义分词器。 - # Args: - # - line: a unicode string. - # Return: - # a list of tokens - # """ - # raise NotImplementedError() - - def iterator(self): - """数据集遍历接口,注意,当数据集遍历到尾部时该接口应自动完成指针重置,即重新从数据集头部开始新的遍历。 - Yield: - (dict) elements that meet the requirements in output_templete - """ - raise NotImplementedError() - - @property - def num_examples(self): - """数据集中的样本数量,即每个epoch中iterator所生成的样本数。注意,使用滑动窗口等可能导致数据集样本数发生变化的策略时,该接口应返回runtime阶段的实际样本数。""" - raise NotImplementedError() - - - -class backbone(object): - """interface of backbone model.""" - - def __init__(self, config, phase): - """ - Args: - config: dict类型。描述了 多任务配置文件+预训练模型配置文件 中定义超参数 - phase: str类型。运行阶段,目前支持train和predict - """ - assert isinstance(config, dict) - - @property - def inputs_attr(self): - """描述backbone从reader处需要得到的输入对象的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 - Return: - dict类型。对各个输入对象的属性描述。例如, - 对于文本分类和匹配任务,bert backbone依赖的reader对象主要包含如下的对象 - {"token_ids": ([-1, max_len], 'int64'), - "input_ids": ([-1, max_len], 'int64'), - "segment_ids": ([-1, max_len], 'int64'), - "input_mask": ([-1, max_len], 'float32')}""" - raise NotImplementedError() - - @property - def outputs_attr(self): - """描述backbone输出对象的属性,包含各个对象的名字、shape以及数据类型。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 - Return: - dict类型。对各个输出对象的属性描述。例如, - 对于文本分类和匹配任务,bert backbone的输出内容可能包含如下的对象 - {"word_emb": ([-1, max_seqlen, word_emb_size], 'float32'), - "sentence_emb": ([-1, hidden_size], 'float32'), - "sim_vec": ([-1, hidden_size], 'float32')}""" - raise NotImplementedError() - - def build(self, inputs): - """建立backbone的计算图。将符合inputs_attr描述的静态图Variable输入映射成符合outputs_attr描述的静态图Variable输出。 - Args: - inputs: dict类型。字典中包含inputs_attr中的对象名到计算图Variable的映射,inputs中至少会包含inputs_attr中定义的对象 - Return: - 需要输出的计算图变量,输出对象会被加入到fetch_list中,从而在每个训练/推理step时得到runtime的计算结果,该计算结果会被传入postprocess方法中供用户处理。 - """ - raise NotImplementedError() - - - - -class task_paradigm(object): - - def __init__(self, config, phase, backbone_config): - """ - config: dict类型。描述了 任务实例(task instance)+多任务配置文件 中定义超参数 - phase: str类型。运行阶段,目前支持train和predict - """ - - @property - def inputs_attrs(self): - """描述task_layer需要从reader, backbone等输入对象集合所读取到的输入对象的属性,第一级key为对象集和的名字,如backbone,reader等(后续会支持更灵活的输入),第二级key为对象集和中各对象的属性,包括对象的名字,shape和dtype。当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 - Return: - dict类型。对各个对象集及其输入对象的属性描述。""" - raise NotImplementedError() - - @property - def outputs_attr(self): - """描述task输出对象的属性,包括对象的名字,shape和dtype。输出对象会被加入到fetch_list中,从而在每个训练/推理step时得到runtime的计算结果,该计算结果会被传入postprocess方法中供用户处理。 - 当某个对象为标量数据类型(如str, int, float等)时,shape设置为空列表[],当某个对象的某个维度长度可变时,shape中的相应维度设置为-1。 - Return: - dict类型。对各个输入对象的属性描述。注意,训练阶段必须包含名为loss的输出对象。 - """ - - raise NotImplementedError() - - def build(self, inputs): - """建立task_layer的计算图。将符合inputs_attrs描述的来自各个对象集的静态图Variables映射成符合outputs_attr描述的静态图Variable输出。 - Args: - inputs: dict类型。字典中包含inputs_attrs中的对象名到计算图Variable的映射,inputs中至少会包含inputs_attr中定义的对象 - Return: - 需要输出的计算图变量,输出对象会被加入到fetch_list中,从而在每个训练/推理step时得到runtime的计算结果,该计算结果会被传入postprocess方法中供用户处理。 - - """ - raise NotImplementedError() - - def postprocess(self, rt_outputs): - """每个训练或推理step后针对当前batch的task_layer的runtime计算结果进行相关后处理。注意,rt_outputs除了包含build方法,还自动包含了loss的计算结果。""" - pass - - def post_postprocess(self, global_buffer): - pass - diff --git a/build/lib/paddlepalm/mtl_controller.py b/build/lib/paddlepalm/mtl_controller.py deleted file mode 100644 index b4716d5..0000000 --- a/build/lib/paddlepalm/mtl_controller.py +++ /dev/null @@ -1,724 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import sys -import importlib -import multiprocessing -from paddle import fluid -from paddle.fluid import layers -import yaml -import json -import logging -import time -import numpy as np - -from paddlepalm.utils.saver import init_pretraining_params, init_checkpoint -from paddlepalm.utils.config_helper import PDConfig -from paddlepalm.utils.print_helper import print_dict -from paddlepalm.utils.reader_helper import create_net_inputs, create_iterator_fn, create_joint_iterator_fn, merge_input_attrs - -from paddlepalm.default_settings import * -from paddlepalm.task_instance import TaskInstance, check_instances - -DEBUG=False -VERBOSE=0 - -def _get_basename(f): - return os.path.splitext(f)[0] - - -def _get_suffix(f): - return os.path.splitext(f)[-1] - - -def _parse_yaml(f, asdict=True, support_cmd_line=False): - assert os.path.exists(f), "file {} not found.".format(f) - if support_cmd_line: - args = PDConfig(yaml_file=f, fuse_args=True) - args.build() - return args.asdict() if asdict else args - else: - if asdict: - with open(f, "r") as fin: - yaml_config = yaml.load(fin, Loader=yaml.SafeLoader) - return yaml_config - else: - raise NotImplementedError() - - -def _parse_json(f, asdict=True, support_cmd_line=False): - assert os.path.exists(f), "file {} not found.".format(f) - if support_cmd_line: - args = PDConfig(json_file=f, fuse_args=support_cmd_line) - args.build() - return args.asdict() if asdict else args - else: - if asdict: - with open(f, "r") as fin: - config = json.load(fin) - return config - else: - raise NotImplementedError() - - -def _parse_list(string, astype=str): - assert isinstance(string, str), "{} is not a string.".format(string) - if ',' not in string: - return [astype(string)] - string = string.replace(',', ' ') - return [astype(i) for i in string.split()] - - -def _try_float(s): - try: - float(s) - return(float(s)) - except: - return s - - -def _check_conf(conf, checklist=None): - assert isinstance(conf, dict), "{} is not a dict.".format(conf) - ret = {} - for k,v in conf.items(): - if isinstance(v, str): - v = _try_float(v) - ret[k] = v - if checklist is not None: - for k, t in checklist: - assert k in ret, "required argument {} is NOT exist in config file.".format(k) - assert isintance(ret[k], t), "value type of argument {} should be {}".format(k, t) - return ret - - -# TODO: 增加None机制,允许hidden size、batch size和seqlen设置为None -def _check_io(in_attr, out_attr, strict=False, in_name="left", out_name="right"): - for name, attr in in_attr.items(): - assert name in out_attr, in_name+': '+name+' not found in '+out_name - if attr != out_attr[name]: - if strict: - raise ValueError(name+': shape or dtype not consistent!') - else: - logging.warning('{}: shape or dtype not consistent!\n{}:\n{}\n{}:\n{}'.format(name, in_name, attr, out_name, out_attr[name])) - - -def _merge_conf(conf1, conf2, conf1_first=True, strict=False): - assert isinstance(conf1, dict), "{} is not a dict.".format(conf1) - assert isinstance(conf2, dict), "{} is not a dict.".format(conf2) - base_conf = conf2 if conf1_first else conf1 - base_conf = base_conf.copy() - new_conf = conf1 if conf1_first else conf2 - - for k, v in new_conf.items(): - if k in base_conf: - if base_conf[k] != v: - raise Warning("value of argument {} has been updated to {}.".format(k, v)) - else: - if strict: - continue - - base_conf[k] = v - return base_conf - - -def _encode_inputs(inputs, scope_name, sep='/', cand_set=None): - outputs = {} - for k, v in inputs.items(): - if cand_set is not None: - if k in cand_set: - outputs[k] = v - if scope_name+sep+k in cand_set: - outputs[scope_name+sep+k] = v - else: - outputs[scope_name+sep+k] = v - return outputs - - -def _decode_inputs(inputs, scope_name, sep='/', keep_unk_keys=True): - outputs = {} - for name, value in inputs.items(): - # var for backbone are also available to tasks - if keep_unk_keys and sep not in name: - outputs[name] = value - # var for this inst - if name.startswith(scope_name+'/'): - outputs[name[len(scope_name+'/'):]] = value - return outputs - - -def _init_env(use_gpu): - if use_gpu: - place = fluid.CUDAPlace(0) - dev_count = fluid.core.get_cuda_device_count() - else: - place = fluid.CPUPlace() - dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) - return fluid.Executor(place), dev_count - - -def _fit_attr(conf, fit_attr, strict=False): - for i, attr in fit_attr.items(): - if i not in conf: - if strict: - raise Exception('Argument {} is required to create a controller.'.format(i)) - else: - continue - conf[i] = attr(conf[i]) - return conf - - -class Controller(object): - - def __init__(self, config=None, task_dir='.', for_train=True): - """ - Args: - config: (str|dict) 字符串类型时,给出yaml格式的config配置文件路径; - """ - - self._for_train = for_train - # default mtl_conf - # if config is None and config_path is None: - # raise ValueError('For config and config_path, at least one of them should be set.') - - if isinstance(config, str): - mtl_conf = _parse_yaml(config, support_cmd_line=True) - # if config is not None: - # mtl_conf = _merge_conf(config, mtl_conf) - else: - mtl_conf = config - - mtl_conf = _check_conf(mtl_conf) - mtl_conf = _fit_attr(mtl_conf, REQUIRED_ARGS, strict=True) - mtl_conf = _fit_attr(mtl_conf, OPTIONAL_ARGS, strict=False) - - exe, dev_count = _init_env(use_gpu=mtl_conf.get('use_gpu', True)) - self.exe = exe - self.dev_count = dev_count - - print_dict(mtl_conf, title='main configuration') - - # parse task instances and target tags - instnames = _parse_list(mtl_conf['task_instance']) - assert len(instnames) == len(set(instnames)), "repeated task_instance is NOT supported." - num_instances = len(instnames) - self.num_instances = num_instances - - instname_to_conf = {} - instname_to_id = {} - for id, instname in enumerate(instnames): - instpath = os.path.join(task_dir, instname+'.yaml') - conf = _parse_yaml(instpath, support_cmd_line=False) - # conf = _check_conf(conf, TASK_INSTANCE_REQUIRED_ARGS) - conf = _check_conf(conf) - temp_conf = _merge_conf(mtl_conf, conf, strict=True) - print_dict(temp_conf, title='{} configuration'.format(instname)) - conf = _merge_conf(mtl_conf, conf) - - instname_to_conf[instname] = conf - instname_to_id[instname] = id - - # create task instances - instances = [] - for name in instnames: - instances.append(TaskInstance(name, instname_to_id[name], instname_to_conf[name])) - - check_instances(instances) - - # parse target_tag - if 'target_tag' in mtl_conf: - target_tag = str(mtl_conf['target_tag']) - tags = _parse_list(target_tag, astype=int) - assert len(tags) == len(instnames), "number of target_tag is NOT consistent with that in task_instance." - for tag, inst in zip(tags, instances): - inst.is_target = tag - else: - tags = [i.is_target for i in instances] - num_targets = sum(tags) - num_auxes = num_instances - num_targets - - # parse mix ratios - if 'mix_ratio' in mtl_conf: - mix_ratio = str(mtl_conf['mix_ratio']) - mrs = _parse_list(mix_ratio, astype=float) - assert len(mrs) == num_instances, "number of mix_ratios is NOT consistent with num_instances." - else: - # TODO: 增加joint training模式,让num_epochs平等的作用于每个instance - mrs = [1.0] * num_instances - - for mr, inst in zip(mrs, instances): - inst.mix_ratio = mr - - # parse task layer reuse tags - instname_to_reusehost = {i:i for i in instnames} - if 'task_reuse_tag' in mtl_conf: - tags = _parse_list(mtl_conf['task_reuse_tag'], astype=int) - assert len(tags) == num_targets, 'number of reuse_tags is NOT consistent with number of instances.' - else: - tags = [] - mapper = {} - for inst in instances: - # 有环则tag_id + 1,否则被mapper shutdown - history = set() - history.add(inst.name) - cur_inst = inst - while True: - # 发现有环 - if cur_inst.task_reuse_scope in history: - mapper[inst.name] = len(tags) - break - # 发现在mapper中 - elif cur_inst.task_reuse_scope in mapper: - mapper[inst.name] = mapper[cur_inst.task_reuse_scope] - break - else: - cur_inst = name_to_instance[cur_inst.task_reuse_scope] - history.add(cur_inst.name) - - tags.append(mapper[inst.name]) - # 注意,上面这段需要做单元测试 - - for i in range(1, num_instances): - for j in range(i): - if tags[i] == tags[j]: - # check paradigm of reused tasks - assert instances[i].task_paradigm == \ - instances[j].task_paradigm, \ - "paradigm of reuse tasks should be consistent" - instances[i].task_reuse_scope = instances[j].name - break - - # parse Reader and Paradigm for each instance - for inst in instances: - reader_name = inst.config['reader'] - reader_mod = importlib.import_module(READER_DIR + '.' + reader_name) - Reader = getattr(reader_mod, 'Reader') - - parad_name = inst.config['paradigm'] - parad_mod = importlib.import_module(PARADIGM_DIR + '.' + parad_name) - Paradigm = getattr(parad_mod, 'TaskParadigm') - - inst.Reader = Reader - inst.Paradigm = Paradigm - - # prepare backbone - if 'backbone_config_path' in mtl_conf: - bb_conf = _parse_json(mtl_conf['backbone_config_path']) - bb_conf = _merge_conf(mtl_conf, bb_conf) - else: - bb_conf = mtl_conf - print_dict(bb_conf, title='backbone configuration'.format(instname)) - - bb_name = mtl_conf['backbone'] - bb_mod = importlib.import_module(BACKBONE_DIR + '.' + bb_name) - Backbone = getattr(bb_mod, 'Model') - - self.instances = instances - self.mrs = mrs - self.Backbone = Backbone - self.bb_conf = bb_conf - self.bb_name = bb_name - - self.has_init_train = False - self.has_init_pred = False - - if self._for_train: - print("initialing for training...") - self._init_train() - self.has_init_train = True - - def _init_train(self): - - instances = self.instances - Backbone = self.Backbone - bb_conf = self.bb_conf - bb_name = self.bb_name - dev_count = self.dev_count - num_instances = len(instances) - mrs = self.mrs - - # set first_target/main task instance - main_inst = None - for inst in instances: - if inst.is_target: - main_inst = inst - inst.is_first_target = True - break - main_conf = main_inst.config - if not os.path.exists(main_conf['save_path']): - os.makedirs(main_conf['save_path']) - - # prepare backbone - train_backbone = Backbone(bb_conf, phase='train') - pred_backbone = Backbone(bb_conf, phase='pred') - - # create reader, task - # then check i/o across reader, backbone and task_layer - task_attrs = [] - pred_task_attrs = [] - for inst in instances: - - train_reader = inst.Reader(inst.config, phase='train') - inst.reader['train'] = train_reader - train_parad = inst.Paradigm(inst.config, phase='train', backbone_config=bb_conf) - inst.task_layer['train'] = train_parad - task_attr_from_reader = _encode_inputs(train_parad.inputs_attrs['reader'], inst.name) - task_attrs.append(task_attr_from_reader) - - _check_io(train_backbone.inputs_attr, train_reader.outputs_attr, in_name=bb_name+'_backbone', out_name='reader.train') - _check_io(train_parad.inputs_attrs['reader'], train_reader.outputs_attr, in_name='task_paradigm.train.reader', out_name='reader.train') - _check_io(train_parad.inputs_attrs['backbone'], train_backbone.outputs_attr, in_name='task_paradigm.train.backbone', out_name=bb_name+'_backbone') - - if inst.is_target: - if 'pred_file' not in inst.config: - inst.config['pred_file'] = '' - pred_reader = inst.Reader(inst.config, phase='pred') - pred_parad = inst.Paradigm(inst.config, phase='pred', backbone_config=bb_conf) - # inst.reader['pred'] = pred_reader # 这里创建的reader是个假reader,只是为了读取output_attr而已,所以不做保存 - inst.task_layer['pred'] = pred_parad - # 框架有巨坑,先这样写吧 - task_attr_from_reader = _encode_inputs(pred_parad.inputs_attrs['reader'], inst.name) - pred_task_attrs.append(task_attr_from_reader) - # task_attr = pred_parad.inputs_attrs['reader'] - _check_io(pred_backbone.inputs_attr, pred_reader.outputs_attr, in_name=bb_name+'_backbone', out_name='reader.pred') - _check_io(pred_parad.inputs_attrs['reader'], pred_reader.outputs_attr, in_name='task_paradigm.pred.reader', out_name='reader.pred') - _check_io(pred_parad.inputs_attrs['backbone'], pred_backbone.outputs_attr, in_name='task_paradigm.pred.backbone', out_name=bb_name+'_backbone') - - # merge reader input attrs from backbone and task_instances - joint_input_names, joint_shape_and_dtypes, name_to_position = merge_input_attrs(train_backbone.inputs_attr, task_attrs) - pred_joint_input_names, pred_joint_shape_and_dtypes, _ = merge_input_attrs(pred_backbone.inputs_attr, pred_task_attrs, insert_taskid=False) - # shapes: [task_id, shapes_of_backbone, shapes_of_inst1, ..., shapes_of_instN] - - if DEBUG: - print('----- for debug -----') - print('joint input names:') - print(joint_input_names) - print('joint input shape and dtypes:') - print(joint_shape_and_dtypes) - - # load data - for inst in instances: - print(inst.name+": preparing data...") - inst.reader['train'].load_data() - - # merge dataset iterators and create net input vars - iterators = [] - prefixes = [] - mrs = [] - for inst in instances: - iterators.append(inst.reader['train'].iterator()) - prefixes.append(inst.name) - mrs.append(inst.mix_ratio) - - joint_iterator_fn = create_joint_iterator_fn(iterators, prefixes, joint_shape_and_dtypes, mrs, name_to_position, dev_count=dev_count, verbose=VERBOSE) - - input_attrs = [[i, j, k] for i, (j,k) in zip(joint_input_names, joint_shape_and_dtypes)] - pred_input_attrs = [[i, j, k] for i, (j,k) in zip(pred_joint_input_names, pred_joint_shape_and_dtypes)] - net_inputs = create_net_inputs(input_attrs, async=True, iterator_fn=joint_iterator_fn, dev_count=dev_count, n_prefetch=3) - - # build backbone and task layers - # 不指定scope名字会挂,框架有坑 - train_prog = fluid.default_main_program() - train_init_prog = fluid.default_startup_program() - # 别用unique_name.guard了,没用的,无法作用到param_attr里的name上 - with fluid.unique_name.guard("backbone-"): - bb_output_vars = train_backbone.build(net_inputs, scope_name='__paddlepalm_') - assert sorted(bb_output_vars.keys()) == sorted(train_backbone.outputs_attr.keys()) - #for var in train_init_prog.blocks[0].vars: - # print(var) - - # 会挂 - # 这里是否有必要新建一个program?是的,被坑死了 - pred_prog = fluid.Program() - pred_init_prog = fluid.Program() - - with fluid.program_guard(main_program = pred_prog, startup_program = pred_init_prog): - pred_net_inputs = create_net_inputs(pred_input_attrs) - # 别用unique_name.guard了,没用的,无法作用到param_attr里的name上 - # with fluid.unique_name.guard("backbone-"): - pred_bb_output_vars = pred_backbone.build(pred_net_inputs, scope_name='__paddlepalm_') - - fluid.framework.switch_main_program(train_prog) - fluid.framework.switch_startup_program(train_init_prog) - - # pred_backbone = train_backbone - # pred_bb_output_vars = bb_output_vars - - task_output_vars = {} - for inst in instances: - task_inputs = {'backbone': bb_output_vars} - task_inputs_from_reader = _decode_inputs(net_inputs, inst.name) - task_inputs['reader'] = task_inputs_from_reader - - scope = inst.task_reuse_scope + '/' - with fluid.unique_name.guard(scope): - output_vars = inst.build_task_layer(task_inputs, phase='train') - output_vars = {inst.name+'/'+key: val for key, val in output_vars.items()} - old = len(task_output_vars) # for debug - task_output_vars.update(output_vars) - assert len(task_output_vars) - old == len(output_vars) # for debug - - # # prepare predict vars for saving inference model - if inst.is_target: - - # task_attr = inst.task_layer['pred'].inputs_attrs['reader'] - # _input_names, _shape_and_dtypes, _ = merge_input_attrs(pred_backbone.inputs_attr, task_attr, insert_taskid=False) - # pred_input_attrs = [[i, j, k] for i, (j,k) in zip(_input_names, _shape_and_dtypes)] - - with fluid.program_guard(pred_prog, pred_init_prog): - # pred_net_inputs = create_net_inputs(pred_input_attrs) - # 这里同时建立了pred阶段的backbone计算图,不知道是否会造成额外的显存开销(paddle不会计算运行路径) - cur_inputs = _decode_inputs(pred_net_inputs, inst.name) - inst.pred_input = cur_inputs - pred_task_inputs = {'backbone': pred_bb_output_vars, 'reader': cur_inputs} - scope = inst.task_reuse_scope + '/' - with fluid.unique_name.guard(scope): - inst.build_task_layer(pred_task_inputs, phase='pred') - - - bb_fetches = {k: v.name for k,v in bb_output_vars.items()} - task_fetches = {k: v.name for k,v in task_output_vars.items()} - # fetches = bb_fetches.copy() # 注意!框架在多卡时无法fetch变长维度的tensor,这里加入bb的out后会挂 - # fetches.update(task_fetches) - fetches = task_fetches - fetches['__task_id'] = net_inputs['__task_id'].name - - # compute loss - task_id_var = net_inputs['__task_id'] - task_id_vec = layers.one_hot(task_id_var, num_instances) - losses = fluid.layers.concat([task_output_vars[inst.name+'/loss'] for inst in instances], axis=0) - loss = layers.reduce_sum(task_id_vec * losses) - - main_reader = main_inst.reader['train'] - - num_examples = main_reader.num_examples - for inst in instances: - max_train_steps = int(main_conf['num_epochs']* inst.mix_ratio * (num_examples // main_conf['batch_size'] // dev_count)) - if inst.is_target: - print('{}: expected train steps {}.'.format(inst.name, max_train_steps)) - inst.steps_pur_epoch = inst.reader['train'].num_examples // main_conf['batch_size'] // dev_count - inst.expected_train_steps = max_train_steps - - global_max_train_steps = int(main_conf['num_epochs'] * sum(mrs) * (num_examples // main_conf['batch_size'] // dev_count)) - print('Estimated overall train steps {}.'.format(global_max_train_steps)) - - if 'warmup_proportion' in main_conf and main_conf['warmup_proportion'] > 0: - warmup_steps = int(global_max_train_steps * main_conf['warmup_proportion']) - print('Warmup steps: '+str(warmup_steps)) - else: - warmup_steps = 0 - # steps_pur_epoch = num_examples // main_conf['batch_size'] // dev_count - - # build optimizer - # 其实也完全可以支持每个任务用它自己的optimizer - if 'optimizer' in main_conf: - optim_mod = importlib.import_module(OPTIMIZER_DIR + '.' + main_conf['optimizer']) - optimize = getattr(optim_mod, OPTIMIZE_METHOD) - optimize(loss, main_conf, max_train_steps, warmup_steps, fluid.default_main_program()) - - loss.persistable = True - if main_conf.get('use_ema', False): - assert 'ema_decay' in main_conf, "ema_decay should be set when use_ema is enabled." - ema = fluid.optimizer.ExponentialMovingAverage(main_conf['ema_decay']) - ema.update() - - # prepare for train - self.train_backbone = train_backbone - self.train_program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name) - self.saver_program = fluid.default_main_program() - - self.main_inst = main_inst - self.fetches = fetches - self.has_init_train = True - self.has_init_pred = True - # self.max_train_steps = max_train_steps - # self.steps_pur_epoch = steps_pur_epoch - - self.exe.run(fluid.default_startup_program()) - print("\nRandomly initialize parameters...\n") - - def _init_pred(self, instance, infer_model_path): - inst = instance - - pred_backbone = self.Backbone(self.bb_conf, phase='pred') - pred_parad = inst.Paradigm(inst.config, phase='pred', backbone_config=self.bb_conf) - inst.task_layer['pred'] = pred_parad - pred_joint_input_names, pred_joint_shape_and_dtypes, name_to_position = merge_input_attrs( - pred_backbone.inputs_attr, inst.task_layer['pred'].inputs_attrs['reader'], - insert_taskid=False) - - pred_prog = inst.load(infer_model_path) - # pred_prog = fluid.CompiledProgram(pred_prog).with_data_parallel() - if inst.reader['pred'] is None: - pred_reader = inst.Reader(inst.config, phase='pred') - inst.reader['pred'] = pred_reader - return pred_prog - - def load_pretrain(self, pretrain_model_path=None): - # load pretrain model (or ckpt) - if pretrain_model_path is None: - assert 'pretrain_model_path' in self.main_conf, "pretrain_model_path NOT set." - pretrain_model_path = self.main_conf['pretrain_model_path'] - - init_pretraining_params( - self.exe, - pretrain_model_path, - main_program=fluid.default_startup_program()) - - - def train(self): - # TODO: 备份各种配置文件,以便用户断点重新训练以及支持将来的预测 - - if not self.has_init_train: - self._init_train() - self.has_init_train = True - - instances = self.instances - num_instances = self.num_instances - main_inst = self.main_inst - main_conf = main_inst.config - - backbone = self.train_backbone - train_program = self.train_program - saver_program = self.saver_program - fetches = self.fetches - - # max_train_steps = self.max_train_steps - # steps_pur_epoch = self.steps_pur_epoch - - finish = [] - for inst in instances: - if inst.is_target: - finish.append(False) - - def train_finish(): - for inst in instances: - if inst.is_target: - if not inst.train_finish: - return False - return True - - # do training - # loss_fetches = {inst.name+'/loss': inst.task_layer['train'].loss for inst in instances} - # old = len(fetches) # for debug - # fetches.update(loss_fetches) - # assert len(fetches) == old + len(loss_fetches) # for debug and avoid user-caused bug - # assert 'task_id' not in fetches # for debug and avoid user-caused bug - # fetches['task_id'] = task_id_var - fetch_names, fetch_list = zip(*fetches.items()) - - main_step = 0 # only count for main task - global_step = 0 # count for all tasks - epoch = 0 - time_begin = time.time() - backbone_buffer = [] - while not train_finish(): - rt_outputs = self.exe.run(train_program, fetch_list=fetch_list) - rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)} - rt_task_id = np.squeeze(rt_outputs['__task_id']).tolist() - # 注意注释掉这一行之后,训练日志实际是错误的 - # assert (not isinstance(rt_task_id, list)) or len(set(rt_task_id)) == 1, rt_task_id - rt_task_id = rt_task_id[0] if isinstance(rt_task_id, list) else rt_task_id - cur_task = instances[rt_task_id] - - backbone_rt_outputs = {k:v for k,v in rt_outputs.items() if '/' not in k} - backbone_buffer.append(backbone.postprocess(backbone_rt_outputs)) - - task_rt_outputs = {k[len(cur_task.name+'/'):]: v for k,v in rt_outputs.items() if k.startswith(cur_task.name+'/')} - instances[rt_task_id].task_layer['train'].postprocess(task_rt_outputs) - - global_step += 1 - # if cur_task.is_target: - cur_task.cur_train_step += 1 - - if global_step % main_conf.get('print_every_n_steps', 5) == 0: - loss = rt_outputs[cur_task.name+'/loss'] - loss = np.mean(np.squeeze(loss)).tolist() - - time_end = time.time() - time_cost = time_end - time_begin - - print("Global step: {}. Task: {}, step {}/{} (epoch {}), loss: {:.3f}, speed: {:.2f} steps/s".format( - global_step, cur_task.name, cur_task.cur_train_step, cur_task.steps_pur_epoch, cur_task.cur_train_epoch, - loss, main_conf.get('print_every_n_steps', 5) / time_cost)) - time_begin = time.time() - - if cur_task.train_finish and cur_task.cur_train_step + cur_task.cur_train_epoch * cur_task.steps_pur_epoch == cur_task.expected_train_steps: - print(cur_task.name+': train finished!') - cur_task.save() - - if 'save_every_n_steps' in main_conf and global_step % main_conf['save_every_n_steps'] == 0: - save_path = os.path.join(main_conf['save_path'], - "step_" + str(global_step)) - fluid.io.save_persistables(self.exe, save_path, saver_program) - - save_path = os.path.join(main_conf['save_path'], - "step_" + str(global_step) + "_final") - fluid.io.save_persistables(self.exe, save_path, saver_program) - - def pred(self, task_instance, inference_model_dir=None): - if self._for_train: - raise Exception('This controller is a trainer. Please build a new controller with for_train=False for predicting.') - - assert isinstance(task_instance, str) - if isinstance(inference_model_dir, str): - assert os.path.exists(inference_model_dir), inference_model_dir+" not found." - if not self.has_init_pred and inference_model_dir is None: - raise ValueError('infer_model_path is required for prediction.') - - instance = None - for inst in self.instances: - if inst.name == task_instance: - instance = inst - break - - if instance is None: - raise ValueError(task_instance + ' is not a valid task_instance.') - - pred_prog = self._init_pred(instance, inference_model_dir) - - inst = instance - inst.reader['pred'].load_data() - fetch_names, fetch_vars = inst.pred_fetch_list - - # iterator = create_iterator_fn(inst.reader['pred'].iterator, inst.name, pred_joint_shape_and_dtypes, name_to_position) - mapper = {k:v for k,v in inst.pred_input} - buf = [] - for feed in inst.reader['pred'].iterator(): - feed = _encode_inputs(feed, inst.name, cand_set=mapper) - feed = {mapper[k]: v for k,v in feed.items()} - - rt_outputs = self.exe.run(pred_prog, feed, fetch_vars) - rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)} - inst.postprocess(rt_outputs, phase='pred') - reader_outputs = inst.reader['pred'].get_epoch_outputs() - inst.epoch_postprocess({'reader':reader_outputs}, phase='pred') - - - - -if __name__ == '__main__': - assert len(sys.argv) == 2, "Usage: python mtl_controller.py " - conf_path = sys.argv[1] - del sys.argv[1] - controller = Controller(conf_path) - if controller.main_conf['do_train']: - controller.train() - - - - - - diff --git a/build/lib/paddlepalm/optimizer/__init__.py b/build/lib/paddlepalm/optimizer/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/optimizer/adam.py b/build/lib/paddlepalm/optimizer/adam.py deleted file mode 100644 index e08e45b..0000000 --- a/build/lib/paddlepalm/optimizer/adam.py +++ /dev/null @@ -1,103 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Optimization and learning rate scheduling.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import paddle.fluid as fluid - -def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps): - """ Applies linear warmup of learning rate from 0 and decay to 0.""" - with fluid.default_main_program()._lr_schedule_guard(): - lr = fluid.layers.tensor.create_global_var( - shape=[1], - value=0.0, - dtype='float32', - persistable=True, - name="scheduled_learning_rate") - - global_step = fluid.layers.learning_rate_scheduler._decay_step_counter() - - with fluid.layers.control_flow.Switch() as switch: - with switch.case(global_step < warmup_steps): - warmup_lr = learning_rate * (global_step / warmup_steps) - fluid.layers.tensor.assign(warmup_lr, lr) - with switch.default(): - decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay( - learning_rate=learning_rate, - decay_steps=num_train_steps, - end_learning_rate=0.0, - power=1.0, - cycle=False) - fluid.layers.tensor.assign(decayed_lr, lr) - - return lr - - -def optimize(loss, config, max_train_steps=None, warmup_steps=0, train_program=None): - if warmup_steps > 0: - decay_strategy = config.get('lr_scheduler', 'linear_warmup_decay') - if decay_strategy == 'noam_decay': - scheduled_lr = fluid.layers.learning_rate_scheduler\ - .noam_decay(1/(warmup_steps *(config['learning_rate'] ** 2)), - warmup_steps) - elif decay_strategy == 'linear_warmup_decay': - scheduled_lr = linear_warmup_decay(config['learning_rate'], warmup_steps, - max_train_steps) - else: - raise ValueError("Unkown lr_scheduler, should be " - "'noam_decay' or 'linear_warmup_decay'") - optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr) - else: - optimizer = fluid.optimizer.Adam(learning_rate=config['learning_rate']) - scheduled_lr = config['learning_rate'] - - clip_norm_thres = 1.0 - # When using mixed precision training, scale the gradient clip threshold - # by loss_scaling - fluid.clip.set_gradient_clip( - clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=clip_norm_thres)) - - def exclude_from_weight_decay(name): - if name.find("layer_norm") > -1: - return True - bias_suffix = ["_bias", "_b", ".b_0"] - for suffix in bias_suffix: - if name.endswith(suffix): - return True - return False - - param_list = dict() - - for param in train_program.global_block().all_parameters(): - param_list[param.name] = param * 1.0 - param_list[param.name].stop_gradient = True - - _, param_grads = optimizer.minimize(loss) - - - if config.get('weight_decay', 0) > 0: - for param, grad in param_grads: - if exclude_from_weight_decay(param.name): - continue - with param.block.program._optimized_guard( - [param, grad]), fluid.framework.name_scope("weight_decay"): - updated_param = param - param_list[ - param.name] * config['weight_decay'] * scheduled_lr - fluid.layers.assign(output=param, input=updated_param) - diff --git a/build/lib/paddlepalm/reader/__init__.py b/build/lib/paddlepalm/reader/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/reader/cls4bert.py b/build/lib/paddlepalm/reader/cls4bert.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/reader/match.py b/build/lib/paddlepalm/reader/match.py deleted file mode 100644 index 0ef8fde..0000000 --- a/build/lib/paddlepalm/reader/match.py +++ /dev/null @@ -1,103 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddlepalm.interface import reader -from paddlepalm.reader.utils.reader4ernie import ClassifyReader - -class Reader(reader): - - def __init__(self, config, phase='train', dev_count=1, print_prefix=''): - """ - Args: - phase: train, eval, pred - """ - - self._is_training = phase == 'train' - - reader = ClassifyReader(config['vocab_path'], - max_seq_len=config['max_seq_len'], - do_lower_case=config.get('do_lower_case', False), - for_cn=config.get('for_cn', False), - random_seed=config.get('seed', None)) - self._reader = reader - self._dev_count = dev_count - - self._batch_size = config['batch_size'] - self._max_seq_len = config['max_seq_len'] - if phase == 'train': - self._input_file = config['train_file'] - self._num_epochs = None # 防止iteartor终止 - self._shuffle = config.get('shuffle', False) - self._shuffle_buffer = config.get('shuffle_buffer', 5000) - elif phase == 'eval': - self._input_file = config['dev_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - elif phase == 'pred': - self._input_file = config['pred_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - - self._phase = phase - # self._batch_size = - self._print_first_n = config.get('print_first_n', 1) - - - @property - def outputs_attr(self): - if self._is_training: - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'], - "label_ids": [[-1,1], 'int64'], - "task_ids": [[-1, -1, 1], 'int64'] - } - else: - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "task_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'] - } - - - def load_data(self): - self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) - - def iterator(self): - - def list_to_dict(x): - names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', - 'label_ids', 'unique_ids'] - outputs = {n: i for n,i in zip(names, x)} - del outputs['unique_ids'] - if not self._is_training: - del outputs['label_ids'] - return outputs - - for batch in self._data_generator(): - yield list_to_dict(batch) - - def get_epoch_outputs(self): - return {'examples': self._reader.get_examples(self._phase), - 'features': self._reader.get_features(self._phase)} - - @property - def num_examples(self): - return self._reader.get_num_examples(phase=self._phase) - diff --git a/build/lib/paddlepalm/reader/match4ernie.py b/build/lib/paddlepalm/reader/match4ernie.py deleted file mode 100644 index 0ef8fde..0000000 --- a/build/lib/paddlepalm/reader/match4ernie.py +++ /dev/null @@ -1,103 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddlepalm.interface import reader -from paddlepalm.reader.utils.reader4ernie import ClassifyReader - -class Reader(reader): - - def __init__(self, config, phase='train', dev_count=1, print_prefix=''): - """ - Args: - phase: train, eval, pred - """ - - self._is_training = phase == 'train' - - reader = ClassifyReader(config['vocab_path'], - max_seq_len=config['max_seq_len'], - do_lower_case=config.get('do_lower_case', False), - for_cn=config.get('for_cn', False), - random_seed=config.get('seed', None)) - self._reader = reader - self._dev_count = dev_count - - self._batch_size = config['batch_size'] - self._max_seq_len = config['max_seq_len'] - if phase == 'train': - self._input_file = config['train_file'] - self._num_epochs = None # 防止iteartor终止 - self._shuffle = config.get('shuffle', False) - self._shuffle_buffer = config.get('shuffle_buffer', 5000) - elif phase == 'eval': - self._input_file = config['dev_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - elif phase == 'pred': - self._input_file = config['pred_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - - self._phase = phase - # self._batch_size = - self._print_first_n = config.get('print_first_n', 1) - - - @property - def outputs_attr(self): - if self._is_training: - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'], - "label_ids": [[-1,1], 'int64'], - "task_ids": [[-1, -1, 1], 'int64'] - } - else: - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "task_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'] - } - - - def load_data(self): - self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) - - def iterator(self): - - def list_to_dict(x): - names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', - 'label_ids', 'unique_ids'] - outputs = {n: i for n,i in zip(names, x)} - del outputs['unique_ids'] - if not self._is_training: - del outputs['label_ids'] - return outputs - - for batch in self._data_generator(): - yield list_to_dict(batch) - - def get_epoch_outputs(self): - return {'examples': self._reader.get_examples(self._phase), - 'features': self._reader.get_features(self._phase)} - - @property - def num_examples(self): - return self._reader.get_num_examples(phase=self._phase) - diff --git a/build/lib/paddlepalm/reader/mlm.py b/build/lib/paddlepalm/reader/mlm.py deleted file mode 100644 index 338fcf2..0000000 --- a/build/lib/paddlepalm/reader/mlm.py +++ /dev/null @@ -1,93 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddlepalm.interface import reader -from paddlepalm.reader.utils.reader4ernie import MaskLMReader - -class Reader(reader): - - def __init__(self, config, phase='train', dev_count=1, print_prefix=''): - """ - Args: - phase: train, eval, pred - """ - - self._is_training = phase == 'train' - - reader = MaskLMReader(config['vocab_path'], - max_seq_len=config['max_seq_len'], - do_lower_case=config.get('do_lower_case', False), - for_cn=config.get('for_cn', False), - random_seed=config.get('seed', None)) - self._reader = reader - self._dev_count = dev_count - - self._batch_size = config['batch_size'] - self._max_seq_len = config['max_seq_len'] - if phase == 'train': - self._input_file = config['train_file'] - self._num_epochs = None # 防止iteartor终止 - self._shuffle = config.get('shuffle', False) - self._shuffle_buffer = config.get('shuffle_buffer', 5000) - elif phase == 'eval': - self._input_file = config['dev_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - elif phase == 'pred': - self._input_file = config['pred_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - - self._phase = phase - # self._batch_size = - self._print_first_n = config.get('print_first_n', 1) - - - @property - def outputs_attr(self): - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'], - "task_ids": [[-1, -1, 1], 'int64'], - "mask_label": [[-1, 1], 'int64'], - "mask_pos": [[-1, 1], 'int64'] - } - - - def load_data(self): - self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) - - def iterator(self): - - def list_to_dict(x): - names = ['token_ids', 'position_ids', 'segment_ids', 'input_mask', - 'task_ids', 'mask_label', 'mask_pos'] - outputs = {n: i for n,i in zip(names, x)} - return outputs - - for batch in self._data_generator(): - yield list_to_dict(batch) - - def get_epoch_outputs(self): - return {'examples': self._reader.get_examples(self._phase), - 'features': self._reader.get_features(self._phase)} - - @property - def num_examples(self): - return self._reader.get_num_examples(phase=self._phase) - diff --git a/build/lib/paddlepalm/reader/mrc4bert.py b/build/lib/paddlepalm/reader/mrc4bert.py deleted file mode 100644 index ebf9aed..0000000 --- a/build/lib/paddlepalm/reader/mrc4bert.py +++ /dev/null @@ -1,656 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import absolute_import -from paddlepalm.interface import reader -from paddlepalm.utils.textprocess_helper import is_whitespace -from paddlepalm.reader.utils.mrqa_helper import MRQAExample, MRQAFeature -import paddlepalm.tokenizer.bert_tokenizer as tokenization - -class Reader(reader): - - def __init__(self, config, phase='train', dev_count=1, print_prefix=''): - """ - Args: - phase: train, eval, pred - """ - - self._is_training = phase == 'train' - - self._tokenizer = tokenization.FullTokenizer( - vocab_file=config['vocab_path'], do_lower_case=config.get('do_lower_case', False)) - self._max_seq_length = config['max_seq_len'] - self._doc_stride = config['doc_stride'] - self._max_query_length = config['max_query_len'] - - if phase == 'train': - self._input_file = config['train_file'] - self._num_epochs = config['num_epochs'] - self._shuffle = config.get('shuffle', False) - self._shuffle_buffer = config.get('shuffle_buffer', 5000) - if phase == 'eval': - self._input_file = config['dev_file'] - self._num_epochs = 1 - self._shuffle = False - elif phase == 'pred': - self._input_file = config['predict_file'] - self._num_epochs = 1 - self._shuffle = False - - # self._batch_size = - self._batch_size = config['batch_size'] - self._pred_batch_size = config.get('pred_batch_size', self._batch_size) - self._print_first_n = config.get('print_first_n', 1) - self._with_negative = config.get('with_negative', False) - self._sample_rate = config.get('sample_rate', 0.02) - - # TODO: without slide window version - self._with_slide_window = config.get('with_slide_window', False) - - self.vocab = self._tokenizer.vocab - self.vocab_size = len(self.vocab) - self.pad_id = self.vocab["[PAD]"] - self.cls_id = self.vocab["[CLS]"] - self.sep_id = self.vocab["[SEP]"] - self.mask_id = self.vocab["[MASK]"] - - self.current_train_example = -1 - self.num_train_examples = -1 - self.current_train_epoch = -1 - - self.n_examples = None - - print(print_prefix + 'reading raw data...') - with open(input_file, "r") as reader: - self.raw_data = json.load(reader)["data"] - print(print_prfix + 'done!') - - @property - def outputs_attr(self): - if self._is_training: - return {"token_ids": [[-1, self.max_seq_len, 1], 'int64'], - "position_ids": [[-1, self.max_seq_len, 1], 'int64'], - "segment_ids": [[-1, self.max_seq_len, 1], 'int64'], - "input_mask": [[-1, self.max_seq_len, 1], 'float32'], - "start_positions": [[-1, self.max_seq_len, 1], 'int64'], - "end_positions": [[-1, self.max_seq_len, 1], 'int64'] - } - else: - return {"token_ids": [[-1, self.max_seq_len, 1], 'int64'], - "position_ids": [[-1, self.max_seq_len, 1], 'int64'], - "segment_ids": [[-1, self.max_seq_len, 1], 'int64'], - "input_mask": [[-1, self.max_seq_len, 1], 'float32'], - "unique_ids": [[-1, 1], 'int64'] - } - - def iterator(self): - - features = [] - for i in self._num_epochs: - if self._is_training: - print(self.print_prefix + '{} epoch {} {}'.format('-'*16, i, '-'*16)) - example_id = 0 - feature_id = 1000000000 - for line in self.train_file: - raw = self.parse_line(line) - - examples = _raw_to_examples(raw['context'], raw['qa_list'], is_training=self._is_training) - for example in examples: - features.extend(_example_to_features(example, example_id, self._tokenizer, \ - self._max_seq_length, self._doc_stride, self._max_query_length, \ - id_offset=1000000000+len(features), is_training=self._is_training)) - if len(features) >= self._batch_size * self._dev_count: - for batch, total_token_num in _features_to_batches( \ - features[:self._batch_size * self._dev_count], \ - batch_size, in_tokens=self._in_tokens): - temp = prepare_batch_data(batch, total_token_num, \ - max_len=self._max_seq_length, voc_size=-1, \ - pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=-1, \ - return_input_mask=True, return_max_len=False, return_num_token=False) - if self._is_training: - tok_ids, pos_ids, seg_ids, input_mask, start_positions, end_positions = temp - yield {"token_ids": tok_ids, "position_ids": pos_ids, "segment_ids": seg_ids, "input_mask": input_mask, "start_positions": start_positions, 'end_positions': end_positions} - else: - tok_ids, pos_ids, seg_ids, input_mask, unique_ids = temp - yield {"token_ids": tok_ids, "position_ids": pos_ids, "segment_ids": seg_ids, "input_mask": input_mask, "unique_ids": unique_ids} - - features = features[self._batch_size * self._dev_count:] - example_id += 1 - - # The last batch may be discarded when running with distributed prediction, so we build some fake batches for the last prediction step. - if self._is_training and len(features) > 0: - pred_batches = [] - for batch, total_token_num in _features_to_batches( \ - features[:self._batch_size * self._dev_count], \ - batch_size, in_tokens=self._in_tokens): - pred_batches.append(prepare_batch_data(batch, total_token_num, max_len=self._max_seq_length, voc_size=-1, - pad_id=self.pad_id, cls_id=self.cls_id, sep_id=self.sep_id, mask_id=-1, \ - return_input_mask=True, return_max_len=False, return_num_token=False)) - - fake_batch = pred_batches[-1] - fake_batch = fake_batch[:-1] + [np.array([-1]*len(fake_batch[0]))] - pred_batches = pred_batches + [fake_batch] * (dev_count - len(pred_batches)) - for batch in pred_batches: - yield batch - - @property - def num_examples(self): - if self.n_examples is None: - self.n_examples = _estimate_runtime_examples(self.raw_data, self._sample_rate, self._tokenizer, \ - self._max_seq_length, self._doc_stride, self._max_query_length, \ - remove_impossible_questions=True, filter_invalid_spans=True) - return self.n_examples - # return math.ceil(n_examples * self._num_epochs / float(self._batch_size * self._dev_count)) - - - -def _raw_to_examples(context, qa_list, is_training=True, remove_impossible_questions=True, filter_invalid_spans=True): - """ - Args: - context: (str) the paragraph that provide information for QA - qa_list: (list) nested dict. Each element in qa_list should contain at least 'id' and 'question'. And the .... - """ - examples = [] - doc_tokens = [] - char_to_word_offset = [] - prev_is_whitespace = True - for c in context: - if is_whitespace(c): - prev_is_whitespace = True - else: - if prev_is_whitespace: - doc_tokens.append(c) - else: - doc_tokens[-1] += c - prev_is_whitespace = False - char_to_word_offset.append(len(doc_tokens) - 1) - - for qa in qa_list: - qas_id = qa["id"] - question_text = qa["question"] - start_position = None - end_position = None - orig_answer_text = None - is_impossible = False - if is_training: - - assert len(qa["answers"]) == 1, "For training, each question should have exactly 1 answer." - - if ('is_impossible' in qa) and (qa["is_impossible"]): - if remove_impossible_questions or filter_invalid_spans: - continue - else: - start_position = -1 - end_position = -1 - orig_answer_text = "" - is_impossible = True - else: - answer = qa["answers"][0] - orig_answer_text = answer["text"] - answer_offset = answer["answer_start"] - answer_length = len(orig_answer_text) - start_position = char_to_word_offset[answer_offset] - end_position = char_to_word_offset[answer_offset + - answer_length - 1] - - # remove corrupt samples - actual_text = " ".join(doc_tokens[start_position:( - end_position + 1)]) - cleaned_answer_text = " ".join( - tokenization.whitespace_tokenize(orig_answer_text)) - if actual_text.find(cleaned_answer_text) == -1: - print(self.print_prefix + "Could not find answer: '%s' vs. '%s'", - actual_text, cleaned_answer_text) - continue - - examples.append(MRQAExample( - qas_id=qas_id, - question_text=question_text, - doc_tokens=doc_tokens, - orig_answer_text=orig_answer_text, - start_position=start_position, - end_position=end_position, - is_impossible=is_impossible)) - - return examples - - - - -def _example_to_features(example, example_id, tokenizer, max_seq_length, doc_stride, max_query_length, id_offset, is_training): - - query_tokens = tokenizer.tokenize(example.question_text) - - if len(query_tokens) > max_query_length: - query_tokens = query_tokens[0:max_query_length] - - tok_to_orig_index = [] - orig_to_tok_index = [] - all_doc_tokens = [] - for (i, token) in enumerate(example.doc_tokens): - orig_to_tok_index.append(len(all_doc_tokens)) - sub_tokens = tokenizer.tokenize(token) - for sub_token in sub_tokens: - tok_to_orig_index.append(i) - all_doc_tokens.append(sub_token) - - tok_start_position = None - tok_end_position = None - if is_training and example.is_impossible: - tok_start_position = -1 - tok_end_position = -1 - if is_training and not example.is_impossible: - tok_start_position = orig_to_tok_index[example.start_position] - if example.end_position < len(example.doc_tokens) - 1: - tok_end_position = orig_to_tok_index[example.end_position + - 1] - 1 - else: - tok_end_position = len(all_doc_tokens) - 1 - (tok_start_position, tok_end_position) = _improve_answer_span( - all_doc_tokens, tok_start_position, tok_end_position, tokenizer, - example.orig_answer_text) - - # The -3 accounts for [CLS], [SEP] and [SEP] - max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 - - # We can have documents that are longer than the maximum sequence length. - # To deal with this we do a sliding window approach, where we take chunks - # of the up to our max length with a stride of `doc_stride`. - _DocSpan = collections.namedtuple( # pylint: disable=invalid-name - "DocSpan", ["start", "length"]) - doc_spans = [] - start_offset = 0 - while start_offset < len(all_doc_tokens): - length = len(all_doc_tokens) - start_offset - if length > max_tokens_for_doc: - length = max_tokens_for_doc - doc_spans.append(_DocSpan(start=start_offset, length=length)) - if start_offset + length == len(all_doc_tokens): - break - start_offset += min(length, doc_stride) - - for (doc_span_index, doc_span) in enumerate(doc_spans): - tokens = [] - token_to_orig_map = {} - token_is_max_context = {} - segment_ids = [] - tokens.append("[CLS]") - segment_ids.append(0) - for token in query_tokens: - tokens.append(token) - segment_ids.append(0) - tokens.append("[SEP]") - segment_ids.append(0) - - for i in range(doc_span.length): - split_token_index = doc_span.start + i - token_to_orig_map[len(tokens)] = tok_to_orig_index[ - split_token_index] - - is_max_context = _check_is_max_context( - doc_spans, doc_span_index, split_token_index) - token_is_max_context[len(tokens)] = is_max_context - tokens.append(all_doc_tokens[split_token_index]) - segment_ids.append(1) - tokens.append("[SEP]") - segment_ids.append(1) - - input_ids = tokenizer.convert_tokens_to_ids(tokens) - - # The mask has 1 for real tokens and 0 for padding tokens. Only real - # tokens are attended to. - input_mask = [1] * len(input_ids) - - # Zero-pad up to the sequence length. - #while len(input_ids) < max_seq_length: - # input_ids.append(0) - # input_mask.append(0) - # segment_ids.append(0) - - #assert len(input_ids) == max_seq_length - #assert len(input_mask) == max_seq_length - #assert len(segment_ids) == max_seq_length - - start_position = None - end_position = None - if is_training and not example.is_impossible: - # For training, if our document chunk does not contain an annotation - # we throw it out, since there is nothing to predict. - doc_start = doc_span.start - doc_end = doc_span.start + doc_span.length - 1 - out_of_span = False - if not (tok_start_position >= doc_start and - tok_end_position <= doc_end): - out_of_span = True - if out_of_span: - start_position = 0 - end_position = 0 - continue - else: - doc_offset = len(query_tokens) + 2 - start_position = tok_start_position - doc_start + doc_offset - end_position = tok_end_position - doc_start + doc_offset - - if is_training and example.is_impossible: - start_position = 0 - end_position = 0 - - def format_print(): - print("*** Example ***") - print("unique_id: %s" % (unique_id)) - print("example_index: %s" % (example_index)) - print("doc_span_index: %s" % (doc_span_index)) - print("tokens: %s" % " ".join( - [tokenization.printable_text(x) for x in tokens])) - print("token_to_orig_map: %s" % " ".join([ - "%d:%d" % (x, y) - for (x, y) in six.iteritems(token_to_orig_map) - ])) - print("token_is_max_context: %s" % " ".join([ - "%d:%s" % (x, y) - for (x, y) in six.iteritems(token_is_max_context) - ])) - print("input_ids: %s" % " ".join([str(x) for x in input_ids])) - print("input_mask: %s" % " ".join([str(x) for x in input_mask])) - print("segment_ids: %s" % - " ".join([str(x) for x in segment_ids])) - if is_training and example.is_impossible: - print("impossible example") - if is_training and not example.is_impossible: - answer_text = " ".join(tokens[start_position:(end_position + - 1)]) - print("start_position: %d" % (start_position)) - print("end_position: %d" % (end_position)) - print("answer: %s" % - (tokenization.printable_text(answer_text))) - - if self._print_first_n > 0: - format_print() - self._print_first_n -= 1 - - features.append(MRQAFeature( - unique_id=id_offset, - example_index=example_id, - doc_span_index=doc_span_index, - tokens=tokens, - token_to_orig_map=token_to_orig_map, - token_is_max_context=token_is_max_context, - input_ids=input_ids, - input_mask=input_mask, - segment_ids=segment_ids, - start_position=start_position, - end_position=end_position, - is_impossible=example.is_impossible)) - - id_offset += 1 - - return features - - -def _features_to_batches(features, batch_size, in_tokens): - batch, total_token_num, max_len = [], 0, 0 - for (index, feature) in enumerate(features): - if phase == 'train': - self.current_train_example = index + 1 - seq_len = len(feature.input_ids) - labels = [feature.unique_id - ] if feature.start_position is None else [ - feature.start_position, feature.end_position - ] - example = [ - feature.input_ids, feature.segment_ids, range(seq_len) - ] + labels - max_len = max(max_len, seq_len) - - if in_tokens: - to_append = (len(batch) + 1) * max_len <= batch_size - else: - to_append = len(batch) < batch_size - - if to_append: - batch.append(example) - total_token_num += seq_len - else: - yield batch, total_token_num - batch, total_token_num, max_len = [example - ], seq_len, seq_len - if len(batch) > 0: - yield batch, total_token_num - - -def _estimate_runtime_examples(data, sample_rate, tokenizer, \ - max_seq_length, doc_stride, max_query_length, \ - remove_impossible_questions=True, filter_invalid_spans=True): - """Count runtime examples which may differ from number of raw samples due to sliding window operation and etc.. - This is useful to get correct warmup steps for training.""" - - assert sample_rate > 0.0 and sample_rate <= 1.0, "sample_rate must be set between 0.0~1.0" - - num_raw_examples = 0 - for entry in data: - for paragraph in entry["paragraphs"]: - paragraph_text = paragraph["context"] - for qa in paragraph["qas"]: - num_raw_examples += 1 - # print("num raw examples:{}".format(num_raw_examples)) - - def is_whitespace(c): - if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: - return True - return False - - sampled_examples = [] - first_samp = True - for entry in data: - for paragraph in entry["paragraphs"]: - doc_tokens = None - for qa in paragraph["qas"]: - if not first_samp and random.random() > sample_rate and sample_rate < 1.0: - continue - - if doc_tokens is None: - paragraph_text = paragraph["context"] - doc_tokens = [] - char_to_word_offset = [] - prev_is_whitespace = True - for c in paragraph_text: - if is_whitespace(c): - prev_is_whitespace = True - else: - if prev_is_whitespace: - doc_tokens.append(c) - else: - doc_tokens[-1] += c - prev_is_whitespace = False - char_to_word_offset.append(len(doc_tokens) - 1) - - assert len(qa["answers"]) == 1, "For training, each question should have exactly 1 answer." - - qas_id = qa["id"] - question_text = qa["question"] - start_position = None - end_position = None - orig_answer_text = None - is_impossible = False - - if ('is_impossible' in qa) and (qa["is_impossible"]): - if remove_impossible_questions or filter_invalid_spans: - continue - else: - start_position = -1 - end_position = -1 - orig_answer_text = "" - is_impossible = True - else: - answer = qa["answers"][0] - orig_answer_text = answer["text"] - answer_offset = answer["answer_start"] - answer_length = len(orig_answer_text) - start_position = char_to_word_offset[answer_offset] - end_position = char_to_word_offset[answer_offset + - answer_length - 1] - - # remove corrupt samples - actual_text = " ".join(doc_tokens[start_position:( - end_position + 1)]) - cleaned_answer_text = " ".join( - tokenization.whitespace_tokenize(orig_answer_text)) - if actual_text.find(cleaned_answer_text) == -1: - continue - - example = MRQAExample( - qas_id=qas_id, - question_text=question_text, - doc_tokens=doc_tokens, - orig_answer_text=orig_answer_text, - start_position=start_position, - end_position=end_position, - is_impossible=is_impossible) - - sampled_examples.append(example) - first_samp = False - - - runtime_sample_rate = len(sampled_examples) / float(num_raw_examples) - - runtime_samp_cnt = 0 - - for example in sampled_examples: - query_tokens = tokenizer.tokenize(example.question_text) - - if len(query_tokens) > max_query_length: - query_tokens = query_tokens[0:max_query_length] - - tok_to_orig_index = [] - orig_to_tok_index = [] - all_doc_tokens = [] - for (i, token) in enumerate(example.doc_tokens): - orig_to_tok_index.append(len(all_doc_tokens)) - sub_tokens = tokenizer.tokenize(token) - for sub_token in sub_tokens: - tok_to_orig_index.append(i) - all_doc_tokens.append(sub_token) - - tok_start_position = None - tok_end_position = None - - tok_start_position = orig_to_tok_index[example.start_position] - if example.end_position < len(example.doc_tokens) - 1: - tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 - else: - tok_end_position = len(all_doc_tokens) - 1 - (tok_start_position, tok_end_position) = _improve_answer_span( - all_doc_tokens, tok_start_position, tok_end_position, tokenizer, - example.orig_answer_text) - - # The -3 accounts for [CLS], [SEP] and [SEP] - max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 - - _DocSpan = collections.namedtuple( # pylint: disable=invalid-name - "DocSpan", ["start", "length"]) - doc_spans = [] - start_offset = 0 - while start_offset < len(all_doc_tokens): - length = len(all_doc_tokens) - start_offset - if length > max_tokens_for_doc: - length = max_tokens_for_doc - doc_spans.append(_DocSpan(start=start_offset, length=length)) - if start_offset + length == len(all_doc_tokens): - break - start_offset += min(length, doc_stride) - - for (doc_span_index, doc_span) in enumerate(doc_spans): - doc_start = doc_span.start - doc_end = doc_span.start + doc_span.length - 1 - if filter_invalid_spans and not (tok_start_position >= doc_start and tok_end_position <= doc_end): - continue - runtime_samp_cnt += 1 - return int(runtime_samp_cnt/runtime_sample_rate) - - -def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, - orig_answer_text): - """Returns tokenized answer spans that better match the annotated answer.""" - - # The MRQA annotations are character based. We first project them to - # whitespace-tokenized words. But then after WordPiece tokenization, we can - # often find a "better match". For example: - # - # Question: What year was John Smith born? - # Context: The leader was John Smith (1895-1943). - # Answer: 1895 - # - # The original whitespace-tokenized answer will be "(1895-1943).". However - # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match - # the exact answer, 1895. - # - # However, this is not always possible. Consider the following: - # - # Question: What country is the top exporter of electornics? - # Context: The Japanese electronics industry is the lagest in the world. - # Answer: Japan - # - # In this case, the annotator chose "Japan" as a character sub-span of - # the word "Japanese". Since our WordPiece tokenizer does not split - # "Japanese", we just use "Japanese" as the annotation. This is fairly rare - # in MRQA, but does happen. - tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) - - for new_start in range(input_start, input_end + 1): - for new_end in range(input_end, new_start - 1, -1): - text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) - if text_span == tok_answer_text: - return (new_start, new_end) - - return (input_start, input_end) - - -def _check_is_max_context(doc_spans, cur_span_index, position): - """Check if this is the 'max context' doc span for the token.""" - - # Because of the sliding window approach taken to scoring documents, a single - # token can appear in multiple documents. E.g. - # Doc: the man went to the store and bought a gallon of milk - # Span A: the man went to the - # Span B: to the store and bought - # Span C: and bought a gallon of - # ... - # - # Now the word 'bought' will have two scores from spans B and C. We only - # want to consider the score with "maximum context", which we define as - # the *minimum* of its left and right context (the *sum* of left and - # right context will always be the same, of course). - # - # In the example the maximum context for 'bought' would be span C since - # it has 1 left context and 3 right context, while span B has 4 left context - # and 0 right context. - best_score = None - best_span_index = None - for (span_index, doc_span) in enumerate(doc_spans): - end = doc_span.start + doc_span.length - 1 - if position < doc_span.start: - continue - if position > end: - continue - num_left_context = position - doc_span.start - num_right_context = end - position - score = min(num_left_context, - num_right_context) + 0.01 * doc_span.length - if best_score is None or score > best_score: - best_score = score - best_span_index = span_index - - return cur_span_index == best_span_index - diff --git a/build/lib/paddlepalm/reader/mrc4ernie.py b/build/lib/paddlepalm/reader/mrc4ernie.py deleted file mode 100644 index 0c550df..0000000 --- a/build/lib/paddlepalm/reader/mrc4ernie.py +++ /dev/null @@ -1,119 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddlepalm.interface import reader -from paddlepalm.reader.utils.reader4ernie import MRCReader - -class Reader(reader): - - def __init__(self, config, phase='train', dev_count=1, print_prefix=''): - """ - Args: - phase: train, eval, pred - """ - - self._is_training = phase == 'train' - - reader = MRCReader(config['vocab_path'], - max_seq_len=config['max_seq_len'], - do_lower_case=config.get('do_lower_case', False), - tokenizer='FullTokenizer', - for_cn=config.get('for_cn', False), - doc_stride=config['doc_stride'], - max_query_length=config['max_query_len'], - random_seed=config.get('seed', None)) - self._reader = reader - self._dev_count = dev_count - - self._batch_size = config['batch_size'] - self._max_seq_len = config['max_seq_len'] - if phase == 'train': - self._input_file = config['train_file'] - # self._num_epochs = config['num_epochs'] - self._num_epochs = None # 防止iteartor终止 - self._shuffle = config.get('shuffle', False) - self._shuffle_buffer = config.get('shuffle_buffer', 5000) - if phase == 'eval': - self._input_file = config['dev_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - elif phase == 'pred': - self._input_file = config['pred_file'] - self._num_epochs = 1 - self._shuffle = False - self._batch_size = config.get('pred_batch_size', self._batch_size) - - self._phase = phase - # self._batch_size = - self._print_first_n = config.get('print_first_n', 1) - - # TODO: without slide window version - self._with_slide_window = config.get('with_slide_window', False) - - - @property - def outputs_attr(self): - if self._is_training: - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'], - "start_positions": [[-1, 1], 'int64'], - "end_positions": [[-1, 1], 'int64'], - "task_ids": [[-1, -1, 1], 'int64'] - } - else: - return {"token_ids": [[-1, -1, 1], 'int64'], - "position_ids": [[-1, -1, 1], 'int64'], - "segment_ids": [[-1, -1, 1], 'int64'], - "task_ids": [[-1, -1, 1], 'int64'], - "input_mask": [[-1, -1, 1], 'float32'], - "unique_ids": [[-1, 1], 'int64'] - } - - @property - def epoch_outputs_attr(self): - if not self._is_training: - return {"examples": None, - "features": None} - - def load_data(self): - self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase) - - def iterator(self): - - def list_to_dict(x): - names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', - 'start_positions', 'end_positions', 'unique_ids'] - outputs = {n: i for n,i in zip(names, x)} - if self._is_training: - del outputs['unique_ids'] - else: - del outputs['start_positions'] - del outputs['end_positions'] - return outputs - - for batch in self._data_generator(): - yield list_to_dict(batch) - - def get_epoch_outputs(self): - return {'examples': self._reader.get_examples(self._phase), - 'features': self._reader.get_features(self._phase)} - - @property - def num_examples(self): - return self._reader.get_num_examples(phase=self._phase) - diff --git a/build/lib/paddlepalm/reader/utils/__init__.py b/build/lib/paddlepalm/reader/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/reader/utils/batching4bert.py b/build/lib/paddlepalm/reader/utils/batching4bert.py deleted file mode 100644 index daeb25a..0000000 --- a/build/lib/paddlepalm/reader/utils/batching4bert.py +++ /dev/null @@ -1,184 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Mask, padding and batching.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -import numpy as np - - -def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3): - """ - Add mask for batch_tokens, return out, mask_label, mask_pos; - Note: mask_pos responding the batch_tokens after padded; - """ - max_len = max([len(sent) for sent in batch_tokens]) - mask_label = [] - mask_pos = [] - prob_mask = np.random.rand(total_token_num) - # Note: the first token is [CLS], so [low=1] - replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num) - pre_sent_len = 0 - prob_index = 0 - for sent_index, sent in enumerate(batch_tokens): - mask_flag = False - prob_index += pre_sent_len - for token_index, token in enumerate(sent): - prob = prob_mask[prob_index + token_index] - if prob > 0.15: - continue - elif 0.03 < prob <= 0.15: - # mask - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = MASK - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - elif 0.015 < prob <= 0.03: - # random replace - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = replace_ids[prob_index + token_index] - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - else: - # keep the original token - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - mask_pos.append(sent_index * max_len + token_index) - pre_sent_len = len(sent) - # ensure at least mask one word in a sentence - while not mask_flag: - token_index = int(np.random.randint(1, high=len(sent) - 1, size=1)) - if sent[token_index] != SEP and sent[token_index] != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = MASK - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - mask_label = np.array(mask_label).astype("int64").reshape([-1, 1]) - mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1]) - return batch_tokens, mask_label, mask_pos - - -def prepare_batch_data(insts, - total_token_num, - max_len=None, - voc_size=0, - pad_id=None, - cls_id=None, - sep_id=None, - mask_id=None, - return_input_mask=True, - return_max_len=True, - return_num_token=False): - """ - 1. generate Tensor of data - 2. generate Tensor of position - 3. generate self attention mask, [shape: batch_size * max_len * max_len] - """ - batch_src_ids = [inst[0] for inst in insts] - batch_sent_ids = [inst[1] for inst in insts] - batch_pos_ids = [inst[2] for inst in insts] - labels_list = [] - # compatible with mrqa, whose example includes start/end positions, - # or unique id - for i in range(3, len(insts[0]), 1): - labels = [inst[i] for inst in insts] - labels = np.array(labels).astype("int64").reshape([-1, 1]) - labels_list.append(labels) - # First step: do mask without padding - if mask_id >= 0: - out, mask_label, mask_pos = mask( - batch_src_ids, - total_token_num, - vocab_size=voc_size, - CLS=cls_id, - SEP=sep_id, - MASK=mask_id) - else: - out = batch_src_ids - # Second step: padding - src_id, self_input_mask = pad_batch_data( - out, - max_len=max_len, - pad_idx=pad_id, return_input_mask=True) - pos_id = pad_batch_data( - batch_pos_ids, - max_len=max_len, - pad_idx=pad_id, - return_pos=False, - return_input_mask=False) - sent_id = pad_batch_data( - batch_sent_ids, - max_len=max_len, - pad_idx=pad_id, - return_pos=False, - return_input_mask=False) - if mask_id >= 0: - return_list = [ - src_id, pos_id, sent_id, self_input_mask, mask_label, mask_pos - ] + labels_list - else: - return_list = [src_id, pos_id, sent_id, self_input_mask] + labels_list - return return_list if len(return_list) > 1 else return_list[0] - - -def pad_batch_data(insts, - max_len=None, - pad_idx=0, - return_pos=False, - return_input_mask=False, - return_max_len=False, - return_num_token=False): - """ - Pad the instances to the max sequence length in batch, and generate the - corresponding position data and input mask. - """ - return_list = [] - if max_len is None: - max_len = max(len(inst) for inst in insts) - # Any token included in dict can be used to pad, since the paddings' loss - # will be masked out by weights and make no effect on parameter gradients. - inst_data = np.array([ - list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts - ]) - return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])] - # position data - if return_pos: - inst_pos = np.array([ - list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst)) - for inst in insts - ]) - return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])] - if return_input_mask: - # This is used to avoid attention on paddings. - input_mask_data = np.array([[1] * len(inst) + [0] * - (max_len - len(inst)) for inst in insts]) - input_mask_data = np.expand_dims(input_mask_data, axis=-1) - return_list += [input_mask_data.astype("float32")] - if return_max_len: - return_list += [max_len] - if return_num_token: - num_token = 0 - for inst in insts: - num_token += len(inst) - return_list += [num_token] - return return_list if len(return_list) > 1 else return_list[0] - - -if __name__ == "__main__": - pass - - diff --git a/build/lib/paddlepalm/reader/utils/batching4ernie.py b/build/lib/paddlepalm/reader/utils/batching4ernie.py deleted file mode 100644 index d3d1357..0000000 --- a/build/lib/paddlepalm/reader/utils/batching4ernie.py +++ /dev/null @@ -1,175 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Mask, padding and batching.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np - -from six.moves import xrange - - -def mask(batch_tokens, - seg_labels, - mask_word_tags, - total_token_num, - vocab_size, - CLS=1, - SEP=2, - MASK=3): - """ - Add mask for batch_tokens, return out, mask_label, mask_pos; - Note: mask_pos responding the batch_tokens after padded; - """ - max_len = max([len(sent) for sent in batch_tokens]) - mask_label = [] - mask_pos = [] - prob_mask = np.random.rand(total_token_num) - # Note: the first token is [CLS], so [low=1] - replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num) - pre_sent_len = 0 - prob_index = 0 - for sent_index, sent in enumerate(batch_tokens): - mask_flag = False - mask_word = mask_word_tags[sent_index] - prob_index += pre_sent_len - if mask_word: - beg = 0 - for token_index, token in enumerate(sent): - seg_label = seg_labels[sent_index][token_index] - if seg_label == 1: - continue - if beg == 0: - if seg_label != -1: - beg = token_index - continue - - prob = prob_mask[prob_index + beg] - if prob > 0.15: - pass - else: - for index in xrange(beg, token_index): - prob = prob_mask[prob_index + index] - base_prob = 1.0 - if index == beg: - base_prob = 0.15 - if base_prob * 0.2 < prob <= base_prob: - mask_label.append(sent[index]) - sent[index] = MASK - mask_flag = True - mask_pos.append(sent_index * max_len + index) - elif base_prob * 0.1 < prob <= base_prob * 0.2: - mask_label.append(sent[index]) - sent[index] = replace_ids[prob_index + index] - mask_flag = True - mask_pos.append(sent_index * max_len + index) - else: - mask_label.append(sent[index]) - mask_pos.append(sent_index * max_len + index) - - if seg_label == -1: - beg = 0 - else: - beg = token_index - else: - for token_index, token in enumerate(sent): - prob = prob_mask[prob_index + token_index] - if prob > 0.15: - continue - elif 0.03 < prob <= 0.15: - # mask - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = MASK - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - elif 0.015 < prob <= 0.03: - # random replace - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = replace_ids[prob_index + - token_index] - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - else: - # keep the original token - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - mask_pos.append(sent_index * max_len + token_index) - - pre_sent_len = len(sent) - - mask_label = np.array(mask_label).astype("int64").reshape([-1, 1]) - mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1]) - return batch_tokens, mask_label, mask_pos - - -def pad_batch_data(insts, - pad_idx=0, - return_pos=False, - return_input_mask=False, - return_max_len=False, - return_num_token=False, - return_seq_lens=False): - """ - Pad the instances to the max sequence length in batch, and generate the - corresponding position data and attention bias. - """ - return_list = [] - max_len = max(len(inst) for inst in insts) - # Any token included in dict can be used to pad, since the paddings' loss - # will be masked out by weights and make no effect on parameter gradients. - - inst_data = np.array( - [inst + list([pad_idx] * (max_len - len(inst))) for inst in insts]) - return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])] - - # position data - if return_pos: - inst_pos = np.array([ - list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst)) - for inst in insts - ]) - - return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])] - - if return_input_mask: - # This is used to avoid attention on paddings. - input_mask_data = np.array([[1] * len(inst) + [0] * - (max_len - len(inst)) for inst in insts]) - input_mask_data = np.expand_dims(input_mask_data, axis=-1) - return_list += [input_mask_data.astype("float32")] - - if return_max_len: - return_list += [max_len] - - if return_num_token: - num_token = 0 - for inst in insts: - num_token += len(inst) - return_list += [num_token] - - if return_seq_lens: - seq_lens = np.array([len(inst) for inst in insts]) - return_list += [seq_lens.astype("int64").reshape([-1, 1])] - - return return_list if len(return_list) > 1 else return_list[0] - - -if __name__ == "__main__": - - pass diff --git a/build/lib/paddlepalm/reader/utils/mlm_batching.py b/build/lib/paddlepalm/reader/utils/mlm_batching.py deleted file mode 100644 index 991d02d..0000000 --- a/build/lib/paddlepalm/reader/utils/mlm_batching.py +++ /dev/null @@ -1,177 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Mask, padding and batching.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -import numpy as np - - -def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3): - """ - Add mask for batch_tokens, return out, mask_label, mask_pos; - Note: mask_pos responding the batch_tokens after padded; - """ - max_len = max([len(sent) for sent in batch_tokens]) - mask_label = [] - mask_pos = [] - prob_mask = np.random.rand(total_token_num) - # Note: the first token is [CLS], so [low=1] - replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num) - pre_sent_len = 0 - prob_index = 0 - for sent_index, sent in enumerate(batch_tokens): - mask_flag = False - prob_index += pre_sent_len - for token_index, token in enumerate(sent): - prob = prob_mask[prob_index + token_index] - if prob > 0.15: - continue - elif 0.03 < prob <= 0.15: - # mask - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = MASK - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - elif 0.015 < prob <= 0.03: - # random replace - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = replace_ids[prob_index + token_index] - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - else: - # keep the original token - if token != SEP and token != CLS: - mask_label.append(sent[token_index]) - mask_pos.append(sent_index * max_len + token_index) - pre_sent_len = len(sent) - # ensure at least mask one word in a sentence - while not mask_flag: - token_index = int(np.random.randint(1, high=len(sent) - 1, size=1)) - if sent[token_index] != SEP and sent[token_index] != CLS: - mask_label.append(sent[token_index]) - sent[token_index] = MASK - mask_flag = True - mask_pos.append(sent_index * max_len + token_index) - mask_label = np.array(mask_label).astype("int64").reshape([-1, 1]) - mask_pos = np.array(mask_pos).astype("int64").reshape([-1, 1]) - return batch_tokens, mask_label, mask_pos - - -def prepare_batch_data(insts, - total_token_num, - max_len=None, - voc_size=0, - pad_id=None, - cls_id=None, - sep_id=None, - mask_id=None, - task_id=0, - return_input_mask=True, - return_max_len=True, - return_num_token=False): - """ - 1. generate Tensor of data - 2. generate Tensor of position - 3. generate self attention mask, [shape: batch_size * max_len * max_len] - """ - batch_src_ids = [inst[0] for inst in insts] - batch_sent_ids = [inst[1] for inst in insts] - batch_pos_ids = [inst[2] for inst in insts] - - # 这里是否应该反过来???否则在task layer里展开后的word embedding是padding后的,这时候word的index是跟没有padding时的index对不上的? - # First step: do mask without padding - out, mask_label, mask_pos = mask( - batch_src_ids, - total_token_num, - vocab_size=voc_size, - CLS=cls_id, - SEP=sep_id, - MASK=mask_id) - # Second step: padding - src_id, self_input_mask = pad_batch_data( - out, - max_len=max_len, - pad_idx=pad_id, return_input_mask=True) - - pos_id = pad_batch_data( - batch_pos_ids, - max_len=max_len, - pad_idx=pad_id, - return_pos=False, - return_input_mask=False) - sent_id = pad_batch_data( - batch_sent_ids, - max_len=max_len, - pad_idx=pad_id, - return_pos=False, - return_input_mask=False) - task_ids = np.ones_like( - src_id, dtype="int64") * task_id - return_list = [ - src_id, pos_id, sent_id, self_input_mask, task_ids, mask_label, mask_pos - ] - return return_list if len(return_list) > 1 else return_list[0] - - -def pad_batch_data(insts, - max_len=None, - pad_idx=0, - return_pos=False, - return_input_mask=False, - return_max_len=False, - return_num_token=False): - """ - Pad the instances to the max sequence length in batch, and generate the - corresponding position data and input mask. - """ - return_list = [] - if max_len is None: - max_len = max(len(inst) for inst in insts) - # Any token included in dict can be used to pad, since the paddings' loss - # will be masked out by weights and make no effect on parameter gradients. - inst_data = np.array([ - list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts - ]) - return_list += [inst_data.astype("int64").reshape([-1, max_len, 1])] - # position data - if return_pos: - inst_pos = np.array([ - list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst)) - for inst in insts - ]) - return_list += [inst_pos.astype("int64").reshape([-1, max_len, 1])] - if return_input_mask: - # This is used to avoid attention on paddings. - input_mask_data = np.array([[1] * len(inst) + [0] * - (max_len - len(inst)) for inst in insts]) - input_mask_data = np.expand_dims(input_mask_data, axis=-1) - return_list += [input_mask_data.astype("float32")] - if return_max_len: - return_list += [max_len] - if return_num_token: - num_token = 0 - for inst in insts: - num_token += len(inst) - return_list += [num_token] - return return_list if len(return_list) > 1 else return_list[0] - - -if __name__ == "__main__": - pass - - diff --git a/build/lib/paddlepalm/reader/utils/mrqa_helper.py b/build/lib/paddlepalm/reader/utils/mrqa_helper.py deleted file mode 100644 index e4f8bf5..0000000 --- a/build/lib/paddlepalm/reader/utils/mrqa_helper.py +++ /dev/null @@ -1,84 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -class MRQAExample(object): - """A single training/test example for simple sequence classification. - - For examples without an answer, the start and end position are -1. - """ - - def __init__(self, - qas_id, - question_text, - doc_tokens, - orig_answer_text=None, - start_position=None, - end_position=None, - is_impossible=False): - self.qas_id = qas_id - self.question_text = question_text - self.doc_tokens = doc_tokens - self.orig_answer_text = orig_answer_text - self.start_position = start_position - self.end_position = end_position - self.is_impossible = is_impossible - - def __str__(self): - return self.__repr__() - - def __repr__(self): - s = "" - s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) - s += ", question_text: %s" % ( - tokenization.printable_text(self.question_text)) - s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) - if self.start_position: - s += ", start_position: %d" % (self.start_position) - if self.start_position: - s += ", end_position: %d" % (self.end_position) - if self.start_position: - s += ", is_impossible: %r" % (self.is_impossible) - return s - - -class MRQAFeature(object): - """A single set of features of data.""" - - def __init__(self, - unique_id, - example_index, - doc_span_index, - tokens, - token_to_orig_map, - token_is_max_context, - input_ids, - input_mask, - segment_ids, - start_position=None, - end_position=None, - is_impossible=None): - self.unique_id = unique_id - self.example_index = example_index - self.doc_span_index = doc_span_index - self.tokens = tokens - self.token_to_orig_map = token_to_orig_map - self.token_is_max_context = token_is_max_context - self.input_ids = input_ids - self.input_mask = input_mask - self.segment_ids = segment_ids - self.start_position = start_position - self.end_position = end_position - self.is_impossible = is_impossible - diff --git a/build/lib/paddlepalm/reader/utils/reader4ernie.py b/build/lib/paddlepalm/reader/utils/reader4ernie.py deleted file mode 100644 index fcf25e7..0000000 --- a/build/lib/paddlepalm/reader/utils/reader4ernie.py +++ /dev/null @@ -1,982 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from __future__ import unicode_literals -from __future__ import absolute_import - -import sys -import os -import json -import random -import logging -import numpy as np -import six -from io import open -from collections import namedtuple - -import paddlepalm.tokenizer.ernie_tokenizer as tokenization -from paddlepalm.reader.utils.batching4ernie import pad_batch_data -from paddlepalm.reader.utils.mlm_batching import prepare_batch_data - - -log = logging.getLogger(__name__) - -if six.PY3: - import io - sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') - sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8') - - -def csv_reader(fd, delimiter='\t'): - def gen(): - for i in fd: - yield i.rstrip('\n').split(delimiter) - return gen() - - -class BaseReader(object): - def __init__(self, - vocab_path, - label_map_config=None, - max_seq_len=512, - do_lower_case=True, - in_tokens=False, - is_inference=False, - random_seed=None, - tokenizer="FullTokenizer", - is_classify=True, - is_regression=False, - for_cn=True, - task_id=0): - self.max_seq_len = max_seq_len - self.tokenizer = tokenization.FullTokenizer( - vocab_file=vocab_path, do_lower_case=do_lower_case) - self.vocab = self.tokenizer.vocab - self.pad_id = self.vocab["[PAD]"] - self.cls_id = self.vocab["[CLS]"] - self.sep_id = self.vocab["[SEP]"] - self.mask_id = self.vocab["[MASK]"] - self.in_tokens = in_tokens - self.is_inference = is_inference - self.for_cn = for_cn - self.task_id = task_id - - np.random.seed(random_seed) - - self.is_classify = is_classify - self.is_regression = is_regression - self.current_example = 0 - self.current_epoch = 0 - self.num_examples = 0 - - self.examples = {} - - if label_map_config: - with open(label_map_config, encoding='utf8') as f: - self.label_map = json.load(f) - else: - self.label_map = None - - def get_train_progress(self): - """Gets progress for training phase.""" - return self.current_example, self.current_epoch - - def _read_tsv(self, input_file, quotechar=None): - """Reads a tab separated value file.""" - with open(input_file, 'r', encoding='utf8') as f: - reader = csv_reader(f) - headers = next(reader) - Example = namedtuple('Example', headers) - - examples = [] - for line in reader: - example = Example(*line) - examples.append(example) - return examples - - def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): - """Truncates a sequence pair in place to the maximum length.""" - - # This is a simple heuristic which will always truncate the longer sequence - # one token at a time. This makes more sense than truncating an equal percent - # of tokens from each, since if one sequence is very short then each token - # that's truncated likely contains more information than a longer sequence. - while True: - total_length = len(tokens_a) + len(tokens_b) - if total_length <= max_length: - break - if len(tokens_a) > len(tokens_b): - tokens_a.pop() - else: - tokens_b.pop() - - def _convert_example_to_record(self, example, max_seq_length, tokenizer): - """Converts a single `Example` into a single `Record`.""" - - text_a = tokenization.convert_to_unicode(example.text_a) - tokens_a = tokenizer.tokenize(text_a) - tokens_b = None - - has_text_b = False - if isinstance(example, dict): - has_text_b = "text_b" in example.keys() - else: - has_text_b = "text_b" in example._fields - - if has_text_b: - text_b = tokenization.convert_to_unicode(example.text_b) - tokens_b = tokenizer.tokenize(text_b) - - if tokens_b: - # Modifies `tokens_a` and `tokens_b` in place so that the total - # length is less than the specified length. - # Account for [CLS], [SEP], [SEP] with "- 3" - self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) - else: - # Account for [CLS] and [SEP] with "- 2" - if len(tokens_a) > max_seq_length - 2: - tokens_a = tokens_a[0:(max_seq_length - 2)] - - # The convention in BERT/ERNIE is: - # (a) For sequence pairs: - # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] - # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 - # (b) For single sequences: - # tokens: [CLS] the dog is hairy . [SEP] - # type_ids: 0 0 0 0 0 0 0 - # - # Where "type_ids" are used to indicate whether this is the first - # sequence or the second sequence. The embedding vectors for `type=0` and - # `type=1` were learned during pre-training and are added to the wordpiece - # embedding vector (and position vector). This is not *strictly* necessary - # since the [SEP] token unambiguously separates the sequences, but it makes - # it easier for the model to learn the concept of sequences. - # - # For classification tasks, the first vector (corresponding to [CLS]) is - # used as as the "sentence vector". Note that this only makes sense because - # the entire model is fine-tuned. - tokens = [] - text_type_ids = [] - tokens.append("[CLS]") - text_type_ids.append(0) - for token in tokens_a: - tokens.append(token) - text_type_ids.append(0) - tokens.append("[SEP]") - text_type_ids.append(0) - - if tokens_b: - for token in tokens_b: - tokens.append(token) - text_type_ids.append(1) - tokens.append("[SEP]") - text_type_ids.append(1) - - token_ids = tokenizer.convert_tokens_to_ids(tokens) - position_ids = list(range(len(token_ids))) - - if self.is_inference: - Record = namedtuple('Record', - ['token_ids', 'text_type_ids', 'position_ids']) - record = Record( - token_ids=token_ids, - text_type_ids=text_type_ids, - position_ids=position_ids) - else: - if self.label_map: - label_id = self.label_map[example.label] - else: - label_id = example.label - - Record = namedtuple('Record', [ - 'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid' - ]) - - qid = None - if "qid" in example._fields: - qid = example.qid - - record = Record( - token_ids=token_ids, - text_type_ids=text_type_ids, - position_ids=position_ids, - label_id=label_id, - qid=qid) - return record - - def _prepare_batch_data(self, examples, batch_size, phase=None): - """generate batch records""" - batch_records, max_len = [], 0 - for index, example in enumerate(examples): - if phase == "train": - self.current_example = index - record = self._convert_example_to_record(example, self.max_seq_len, - self.tokenizer) - max_len = max(max_len, len(record.token_ids)) - if self.in_tokens: - to_append = (len(batch_records) + 1) * max_len <= batch_size - else: - to_append = len(batch_records) < batch_size - if to_append: - batch_records.append(record) - else: - yield self._pad_batch_records(batch_records) - batch_records, max_len = [record], len(record.token_ids) - - if phase == 'pred' and batch_records: - yield self._pad_batch_records(batch_records) - - def get_num_examples(self, input_file=None, phase=None): - if self.examples is not None: - if phase is None: - phase = 'all' - return len(self.examples[phase]) - else: - assert input_file is not None, "Argument input_file should be given or the data_generator should be created when this func is called." - examples = self._read_tsv(input_file) - return len(examples) - - def data_generator(self, - input_file, - batch_size, - epoch, - dev_count=1, - shuffle=True, - phase=None): - examples = self._read_tsv(input_file) - if phase is None: - phase = 'all' - self.examples[phase] = examples - - def wrapper(): - all_dev_batches = [] - if epoch is None: - num_epochs = 99999999 - else: - num_epochs = epoch - for epoch_index in range(num_epochs): - if phase == "train": - self.current_example = 0 - self.current_epoch = epoch_index - if shuffle: - np.random.shuffle(examples) - - for batch_data in self._prepare_batch_data( - examples, batch_size, phase=phase): - if len(all_dev_batches) < dev_count: - all_dev_batches.append(batch_data) - if len(all_dev_batches) == dev_count: - for batch in all_dev_batches: - yield batch - all_dev_batches = [] - def f(): - for i in wrapper(): - yield i - - # def f(): - # try: - # for i in wrapper(): - # yield i - # except Exception as e: - # import traceback - # traceback.print_exc() - - return f - - -class MaskLMReader(BaseReader): - - def _convert_example_to_record(self, example, max_seq_length, tokenizer): - """Converts a single `Example` into a single `Record`.""" - - text_a = tokenization.convert_to_unicode(example.text_a) - tokens_a = tokenizer.tokenize(text_a) - tokens_b = None - - - has_text_b = False - if isinstance(example, dict): - has_text_b = "text_b" in example.keys() - else: - has_text_b = "text_b" in example._fields - - if has_text_b: - text_b = tokenization.convert_to_unicode(example.text_b) - tokens_b = tokenizer.tokenize(text_b) - - if tokens_b: - # Modifies `tokens_a` and `tokens_b` in place so that the total - # length is less than the specified length. - # Account for [CLS], [SEP], [SEP] with "- 3" - self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) - else: - # Account for [CLS] and [SEP] with "- 2" - if len(tokens_a) > max_seq_length - 2: - tokens_a = tokens_a[0:(max_seq_length - 2)] - - # The convention in BERT/ERNIE is: - # (a) For sequence pairs: - # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] - # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 - # (b) For single sequences: - # tokens: [CLS] the dog is hairy . [SEP] - # type_ids: 0 0 0 0 0 0 0 - # - # Where "type_ids" are used to indicate whether this is the first - # sequence or the second sequence. The embedding vectors for `type=0` and - # `type=1` were learned during pre-training and are added to the wordpiece - # embedding vector (and position vector). This is not *strictly* necessary - # since the [SEP] token unambiguously separates the sequences, but it makes - # it easier for the model to learn the concept of sequences. - # - # For classification tasks, the first vector (corresponding to [CLS]) is - # used as as the "sentence vector". Note that this only makes sense because - # the entire model is fine-tuned. - tokens = [] - text_type_ids = [] - tokens.append("[CLS]") - text_type_ids.append(0) - for token in tokens_a: - tokens.append(token) - text_type_ids.append(0) - tokens.append("[SEP]") - text_type_ids.append(0) - - if tokens_b: - for token in tokens_b: - tokens.append(token) - text_type_ids.append(1) - tokens.append("[SEP]") - text_type_ids.append(1) - - token_ids = tokenizer.convert_tokens_to_ids(tokens) - position_ids = list(range(len(token_ids))) - - # Record = namedtuple('Record', - # ['token_ids', 'text_type_ids', 'position_ids']) - # record = Record( - # token_ids=token_ids, - # text_type_ids=text_type_ids, - # position_ids=position_ids) - - return [token_ids, text_type_ids, position_ids] - - def batch_reader(self, examples, batch_size, in_tokens, phase): - batch = [] - total_token_num = 0 - for e in examples: - parsed_line = self._convert_example_to_record(e, self.max_seq_len, self.tokenizer) - to_append = len(batch) < batch_size - if to_append: - batch.append(parsed_line) - total_token_num += len(parsed_line[0]) - else: - yield batch, total_token_num - batch = [parsed_line] - total_token_num = len(parsed_line[0]) - - if len(batch) > 0 and phase == 'pred': - yield batch, total_token_num - - def data_generator(self, - input_file, - batch_size, - epoch, - dev_count=1, - shuffle=True, - phase=None): - examples = self._read_tsv(input_file) - if phase is None: - phase = 'all' - self.examples[phase] = examples - - def wrapper(): - all_dev_batches = [] - if epoch is None: - num_epochs = 99999999 - else: - num_epochs = epoch - for epoch_index in range(num_epochs): - if phase == "train": - self.current_example = 0 - self.current_epoch = epoch_index - if shuffle: - np.random.shuffle(examples) - - all_dev_batches = [] - for batch_data, num_tokens in self.batch_reader(examples, - batch_size, self.in_tokens, phase=phase): - batch_data = prepare_batch_data( - batch_data, - num_tokens, - voc_size=len(self.vocab), - pad_id=self.pad_id, - cls_id=self.cls_id, - sep_id=self.sep_id, - mask_id=self.mask_id, - # max_len=self.max_seq_len, # 注意,如果padding到最大长度,会导致mask_pos与实际位置不对应。因为mask pos是基于batch内最大长度来计算的。 - return_input_mask=True, - return_max_len=False, - return_num_token=False) - - if len(all_dev_batches) < dev_count: - all_dev_batches.append(batch_data) - if len(all_dev_batches) == dev_count: - for batch in all_dev_batches: - yield batch - all_dev_batches = [] - - return wrapper - - -class ClassifyReader(BaseReader): - def _read_tsv(self, input_file, quotechar=None): - """Reads a tab separated value file.""" - with open(input_file, 'r', encoding='utf8') as f: - reader = csv_reader(f) - headers = next(reader) - text_indices = [ - index for index, h in enumerate(headers) if h != "label" - ] - Example = namedtuple('Example', headers) - - examples = [] - for line in reader: - for index, text in enumerate(line): - if index in text_indices: - if self.for_cn: - line[index] = text.replace(' ', '') - else: - line[index] = text - example = Example(*line) - examples.append(example) - return examples - - def _pad_batch_records(self, batch_records): - batch_token_ids = [record.token_ids for record in batch_records] - batch_text_type_ids = [record.text_type_ids for record in batch_records] - batch_position_ids = [record.position_ids for record in batch_records] - - if not self.is_inference: - batch_labels = [record.label_id for record in batch_records] - if self.is_classify: - batch_labels = np.array(batch_labels).astype("int64").reshape( - [-1, 1]) - elif self.is_regression: - batch_labels = np.array(batch_labels).astype("float32").reshape( - [-1, 1]) - - if batch_records[0].qid: - batch_qids = [record.qid for record in batch_records] - batch_qids = np.array(batch_qids).astype("int64").reshape( - [-1, 1]) - else: - batch_qids = np.array([]).astype("int64").reshape([-1, 1]) - - # padding - padded_token_ids, input_mask = pad_batch_data( - batch_token_ids, pad_idx=self.pad_id, return_input_mask=True) - padded_text_type_ids = pad_batch_data( - batch_text_type_ids, pad_idx=self.pad_id) - padded_position_ids = pad_batch_data( - batch_position_ids, pad_idx=self.pad_id) - padded_task_ids = np.ones_like( - padded_token_ids, dtype="int64") * self.task_id - - return_list = [ - padded_token_ids, padded_text_type_ids, padded_position_ids, - padded_task_ids, input_mask - ] - if not self.is_inference: - return_list += [batch_labels, batch_qids] - - return return_list - - -class SequenceLabelReader(BaseReader): - def _pad_batch_records(self, batch_records): - batch_token_ids = [record.token_ids for record in batch_records] - batch_text_type_ids = [record.text_type_ids for record in batch_records] - batch_position_ids = [record.position_ids for record in batch_records] - batch_label_ids = [record.label_ids for record in batch_records] - - # padding - padded_token_ids, input_mask, batch_seq_lens = pad_batch_data( - batch_token_ids, - pad_idx=self.pad_id, - return_input_mask=True, - return_seq_lens=True) - padded_text_type_ids = pad_batch_data( - batch_text_type_ids, pad_idx=self.pad_id) - padded_position_ids = pad_batch_data( - batch_position_ids, pad_idx=self.pad_id) - padded_label_ids = pad_batch_data( - batch_label_ids, pad_idx=len(self.label_map) - 1) - padded_task_ids = np.ones_like( - padded_token_ids, dtype="int64") * self.task_id - - return_list = [ - padded_token_ids, padded_text_type_ids, padded_position_ids, - padded_task_ids, input_mask, padded_label_ids, batch_seq_lens - ] - return return_list - - def _reseg_token_label(self, tokens, labels, tokenizer): - assert len(tokens) == len(labels) - ret_tokens = [] - ret_labels = [] - for token, label in zip(tokens, labels): - sub_token = tokenizer.tokenize(token) - if len(sub_token) == 0: - continue - ret_tokens.extend(sub_token) - if len(sub_token) == 1: - ret_labels.append(label) - continue - - if label == "O" or label.startswith("I-"): - ret_labels.extend([label] * len(sub_token)) - elif label.startswith("B-"): - i_label = "I-" + label[2:] - ret_labels.extend([label] + [i_label] * (len(sub_token) - 1)) - elif label.startswith("S-"): - b_laebl = "B-" + label[2:] - e_label = "E-" + label[2:] - i_label = "I-" + label[2:] - ret_labels.extend([b_laebl] + [i_label] * (len(sub_token) - 2) + [e_label]) - elif label.startswith("E-"): - i_label = "I-" + label[2:] - ret_labels.extend([i_label] * (len(sub_token) - 1) + [label]) - - assert len(ret_tokens) == len(ret_labels) - return ret_tokens, ret_labels - - def _convert_example_to_record(self, example, max_seq_length, tokenizer): - tokens = tokenization.convert_to_unicode(example.text_a).split(u"") - labels = tokenization.convert_to_unicode(example.label).split(u"") - tokens, labels = self._reseg_token_label(tokens, labels, tokenizer) - - if len(tokens) > max_seq_length - 2: - tokens = tokens[0:(max_seq_length - 2)] - labels = labels[0:(max_seq_length - 2)] - - tokens = ["[CLS]"] + tokens + ["[SEP]"] - token_ids = tokenizer.convert_tokens_to_ids(tokens) - position_ids = list(range(len(token_ids))) - text_type_ids = [0] * len(token_ids) - no_entity_id = len(self.label_map) - 1 - label_ids = [no_entity_id] + [ - self.label_map[label] for label in labels - ] + [no_entity_id] - - Record = namedtuple( - 'Record', - ['token_ids', 'text_type_ids', 'position_ids', 'label_ids']) - record = Record( - token_ids=token_ids, - text_type_ids=text_type_ids, - position_ids=position_ids, - label_ids=label_ids) - return record - - -class ExtractEmbeddingReader(BaseReader): - def _pad_batch_records(self, batch_records): - batch_token_ids = [record.token_ids for record in batch_records] - batch_text_type_ids = [record.text_type_ids for record in batch_records] - batch_position_ids = [record.position_ids for record in batch_records] - - # padding - padded_token_ids, input_mask, seq_lens = pad_batch_data( - batch_token_ids, - pad_idx=self.pad_id, - return_input_mask=True, - return_seq_lens=True) - padded_text_type_ids = pad_batch_data( - batch_text_type_ids, pad_idx=self.pad_id) - padded_position_ids = pad_batch_data( - batch_position_ids, pad_idx=self.pad_id) - padded_task_ids = np.ones_like( - padded_token_ids, dtype="int64") * self.task_id - - return_list = [ - padded_token_ids, padded_text_type_ids, padded_position_ids, - padded_task_ids, input_mask, seq_lens - ] - - return return_list - - -class MRCReader(BaseReader): - def __init__(self, - vocab_path, - label_map_config=None, - max_seq_len=512, - do_lower_case=True, - in_tokens=False, - random_seed=None, - tokenizer="FullTokenizer", - is_classify=True, - is_regression=False, - for_cn=True, - task_id=0, - doc_stride=128, - max_query_length=64): - self.max_seq_len = max_seq_len - self.tokenizer = tokenization.FullTokenizer( - vocab_file=vocab_path, do_lower_case=do_lower_case) - self.vocab = self.tokenizer.vocab - self.pad_id = self.vocab["[PAD]"] - self.cls_id = self.vocab["[CLS]"] - self.sep_id = self.vocab["[SEP]"] - self.in_tokens = in_tokens - self.for_cn = for_cn - self.task_id = task_id - self.doc_stride = doc_stride - self.max_query_length = max_query_length - self.examples = {} - self.features = {} - - if random_seed is not None: - np.random.seed(random_seed) - - self.current_example = 0 - self.current_epoch = 0 - self.num_examples = 0 - - self.Example = namedtuple('Example', - ['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text', - 'start_position', 'end_position']) - self.Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index", - "tokens", "token_to_orig_map", "token_is_max_context", - "token_ids", "position_ids", "text_type_ids", - "start_position", "end_position"]) - self.DocSpan = namedtuple("DocSpan", ["start", "length"]) - - def _read_json(self, input_file, is_training): - examples = [] - with open(input_file, "r", encoding='utf8') as f: - input_data = json.load(f)["data"] - for entry in input_data: - for paragraph in entry["paragraphs"]: - paragraph_text = paragraph["context"] - for qa in paragraph["qas"]: - qas_id = qa["id"] - question_text = qa["question"] - start_pos = None - end_pos = None - orig_answer_text = None - - if is_training: - if len(qa["answers"]) != 1: - raise ValueError( - "For training, each question should have exactly 1 answer." - ) - - answer = qa["answers"][0] - orig_answer_text = answer["text"] - answer_offset = answer["answer_start"] - answer_length = len(orig_answer_text) - doc_tokens = [ - paragraph_text[:answer_offset], - paragraph_text[answer_offset:answer_offset + - answer_length], - paragraph_text[answer_offset + answer_length:] - ] - - start_pos = 1 - end_pos = 1 - - actual_text = " ".join(doc_tokens[start_pos:(end_pos - + 1)]) - if actual_text.find(orig_answer_text) == -1: - log.info("Could not find answer: '%s' vs. '%s'", - actual_text, orig_answer_text) - continue - else: - doc_tokens = tokenization.tokenize_chinese_chars( - paragraph_text) - - example = self.Example( - qas_id=qas_id, - question_text=question_text, - doc_tokens=doc_tokens, - orig_answer_text=orig_answer_text, - start_position=start_pos, - end_position=end_pos) - examples.append(example) - - return examples - - def _improve_answer_span(self, doc_tokens, input_start, input_end, - tokenizer, orig_answer_text): - tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) - - for new_start in range(input_start, input_end + 1): - for new_end in range(input_end, new_start - 1, -1): - text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) - if text_span == tok_answer_text: - return (new_start, new_end) - - return (input_start, input_end) - - def _check_is_max_context(self, doc_spans, cur_span_index, position): - best_score = None - best_span_index = None - for (span_index, doc_span) in enumerate(doc_spans): - end = doc_span.start + doc_span.length - 1 - if position < doc_span.start: - continue - if position > end: - continue - num_left_context = position - doc_span.start - num_right_context = end - position - score = min(num_left_context, - num_right_context) + 0.01 * doc_span.length - if best_score is None or score > best_score: - best_score = score - best_span_index = span_index - - return cur_span_index == best_span_index - - def _convert_example_to_feature(self, examples, max_seq_length, tokenizer, - is_training): - features = [] - unique_id = 1000000000 - - for (example_index, example) in enumerate(examples): - query_tokens = tokenizer.tokenize(example.question_text) - if len(query_tokens) > self.max_query_length: - query_tokens = query_tokens[0:self.max_query_length] - tok_to_orig_index = [] - orig_to_tok_index = [] - all_doc_tokens = [] - for (i, token) in enumerate(example.doc_tokens): - orig_to_tok_index.append(len(all_doc_tokens)) - sub_tokens = tokenizer.tokenize(token) - for sub_token in sub_tokens: - tok_to_orig_index.append(i) - all_doc_tokens.append(sub_token) - - tok_start_position = None - tok_end_position = None - if is_training: - tok_start_position = orig_to_tok_index[example.start_position] - if example.end_position < len(example.doc_tokens) - 1: - tok_end_position = orig_to_tok_index[example.end_position + - 1] - 1 - else: - tok_end_position = len(all_doc_tokens) - 1 - (tok_start_position, - tok_end_position) = self._improve_answer_span( - all_doc_tokens, tok_start_position, tok_end_position, - tokenizer, example.orig_answer_text) - - max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 - doc_spans = [] - start_offset = 0 - while start_offset < len(all_doc_tokens): - length = len(all_doc_tokens) - start_offset - if length > max_tokens_for_doc: - length = max_tokens_for_doc - doc_spans.append(self.DocSpan(start=start_offset, length=length)) - if start_offset + length == len(all_doc_tokens): - break - start_offset += min(length, self.doc_stride) - - for (doc_span_index, doc_span) in enumerate(doc_spans): - tokens = [] - token_to_orig_map = {} - token_is_max_context = {} - text_type_ids = [] - tokens.append("[CLS]") - text_type_ids.append(0) - for token in query_tokens: - tokens.append(token) - text_type_ids.append(0) - tokens.append("[SEP]") - text_type_ids.append(0) - - for i in range(doc_span.length): - split_token_index = doc_span.start + i - token_to_orig_map[len(tokens)] = tok_to_orig_index[ - split_token_index] - - is_max_context = self._check_is_max_context( - doc_spans, doc_span_index, split_token_index) - token_is_max_context[len(tokens)] = is_max_context - tokens.append(all_doc_tokens[split_token_index]) - text_type_ids.append(1) - tokens.append("[SEP]") - text_type_ids.append(1) - - token_ids = tokenizer.convert_tokens_to_ids(tokens) - position_ids = list(range(len(token_ids))) - start_position = None - end_position = None - if is_training: - doc_start = doc_span.start - doc_end = doc_span.start + doc_span.length - 1 - out_of_span = False - if not (tok_start_position >= doc_start and - tok_end_position <= doc_end): - out_of_span = True - if out_of_span: - start_position = 0 - end_position = 0 - else: - doc_offset = len(query_tokens) + 2 - start_position = tok_start_position - doc_start + doc_offset - end_position = tok_end_position - doc_start + doc_offset - - feature = self.Feature( - unique_id=unique_id, - example_index=example_index, - doc_span_index=doc_span_index, - tokens=tokens, - token_to_orig_map=token_to_orig_map, - token_is_max_context=token_is_max_context, - token_ids=token_ids, - position_ids=position_ids, - text_type_ids=text_type_ids, - start_position=start_position, - end_position=end_position) - features.append(feature) - - unique_id += 1 - - return features - - def _prepare_batch_data(self, records, batch_size, phase=None): - """generate batch records""" - batch_records, max_len = [], 0 - - for index, record in enumerate(records): - if phase == "train": - self.current_example = index - max_len = max(max_len, len(record.token_ids)) - if self.in_tokens: - to_append = (len(batch_records) + 1) * max_len <= batch_size - else: - to_append = len(batch_records) < batch_size - if to_append: - batch_records.append(record) - else: - yield self._pad_batch_records(batch_records, phase == "train") - batch_records, max_len = [record], len(record.token_ids) - - if phase == 'pred' and batch_records: - yield self._pad_batch_records(batch_records, phase == "train") - - def _pad_batch_records(self, batch_records, is_training): - batch_token_ids = [record.token_ids for record in batch_records] - batch_text_type_ids = [record.text_type_ids for record in batch_records] - batch_position_ids = [record.position_ids for record in batch_records] - if is_training: - batch_start_position = [ - record.start_position for record in batch_records - ] - batch_end_position = [ - record.end_position for record in batch_records - ] - batch_start_position = np.array(batch_start_position).astype( - "int64").reshape([-1, 1]) - batch_end_position = np.array(batch_end_position).astype( - "int64").reshape([-1, 1]) - - else: - batch_size = len(batch_token_ids) - batch_start_position = np.zeros( - shape=[batch_size, 1], dtype="int64") - batch_end_position = np.zeros(shape=[batch_size, 1], dtype="int64") - - batch_unique_ids = [record.unique_id for record in batch_records] - batch_unique_ids = np.array(batch_unique_ids).astype("int64").reshape( - [-1, 1]) - - # padding - padded_token_ids, input_mask = pad_batch_data( - batch_token_ids, pad_idx=self.pad_id, return_input_mask=True) - padded_text_type_ids = pad_batch_data( - batch_text_type_ids, pad_idx=self.pad_id) - padded_position_ids = pad_batch_data( - batch_position_ids, pad_idx=self.pad_id) - padded_task_ids = np.ones_like( - padded_token_ids, dtype="int64") * self.task_id - - return_list = [ - padded_token_ids, padded_text_type_ids, padded_position_ids, - padded_task_ids, input_mask, batch_start_position, - batch_end_position, batch_unique_ids - ] - - return return_list - - def get_num_examples(self, phase): - return len(self.features[phase]) - - def get_features(self, phase): - return self.features[phase] - - def get_examples(self, phase): - return self.examples[phase] - - def data_generator(self, - input_file, - batch_size, - epoch, - dev_count=1, - shuffle=True, - phase=None): - - examples = self.examples.get(phase, None) - features = self.features.get(phase, None) - if not examples: - examples = self._read_json(input_file, phase == "train") - features = self._convert_example_to_feature( - examples, self.max_seq_len, self.tokenizer, phase == "train") - self.examples[phase] = examples - self.features[phase] = features - - def wrapper(): - all_dev_batches = [] - if epoch is None: - num_epochs = 99999999 - else: - num_epochs = epoch - for epoch_index in range(num_epochs): - if phase == "train": - self.current_example = 0 - self.current_epoch = epoch_index - if phase == "train" and shuffle: - np.random.shuffle(features) - - for batch_data in self._prepare_batch_data( - features, batch_size, phase=phase): - if len(all_dev_batches) < dev_count: - all_dev_batches.append(batch_data) - if len(all_dev_batches) == dev_count: - for batch in all_dev_batches: - yield batch - all_dev_batches = [] - - return wrapper - - -if __name__ == '__main__': - pass diff --git a/build/lib/paddlepalm/task_instance.py b/build/lib/paddlepalm/task_instance.py deleted file mode 100644 index 36ad848..0000000 --- a/build/lib/paddlepalm/task_instance.py +++ /dev/null @@ -1,288 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from paddlepalm.interface import reader as base_reader -from paddlepalm.interface import task_paradigm as base_paradigm -import os -import json -from paddle import fluid - -class TaskInstance(object): - - def __init__(self, name, id, config={}, verbose=True): - self._name = name - self._config = config - self._verbose = verbose - - self._save_infermodel_path = os.path.join(self._config['save_path'], 'infer_model') - self._save_ckpt_path = os.path.join(self._config['save_path'], 'ckpt') - - # following flags can be fetch from instance config file - self._is_target = config.get('is_target', True) - self._first_target = config.get('is_first_target', False) - self._task_reuse_scope = config.get('task_reuse_scope', name) - - self._feeded_var_names = None - self._target_vars = None - - # training process management - self._mix_ratio = None - self._expected_train_steps = None - self._expected_train_epochs = None - self._steps_pur_epoch = None - self._cur_train_epoch = 0 - self._cur_train_step = 0 - self._train_finish = False - - # 存放不同运行阶段(train,eval,pred)的数据集reader,key为phase,value为Reader实例 - self._reader = {'train': None, 'eval': None, 'pred': None} - self._input_layer = None - self._inputname_to_varname = {} - self._task_layer = {'train': None, 'eval': None, 'pred': None} - self._pred_input_name_list = [] - self._pred_input_varname_list = [] - self._pred_fetch_name_list = [] - self._pred_fetch_var_list = [] - - self._Reader = None - self._Paradigm = None - - self._exe = fluid.Executor(fluid.CPUPlace()) - - self._save_protocol = { - 'input_names': 'self._pred_input_name_list', - 'input_varnames': 'self._pred_input_varname_list', - 'fetch_list': 'self._pred_fetch_name_list'} - - - def build_task_layer(self, net_inputs, phase): - output_vars = self._task_layer[phase].build(net_inputs) - if phase == 'pred': - if output_vars is not None: - self._pred_fetch_name_list, self._pred_fetch_var_list = zip(*output_vars.items()) - else: - self._pred_fetch_name_list = [] - self._pred_fetch_var_list = [] - return output_vars - - def postprocess(self, rt_outputs, phase): - return self._task_layer[phase].postprocess(rt_outputs) - - def epoch_postprocess(self, epoch_inputs, phase): - return self._task_layer[phase].epoch_postprocess(epoch_inputs) - - def save(self, suffix=''): - dirpath = self._save_infermodel_path + suffix - self._pred_input_varname_list = [str(i) for i in self._pred_input_varname_list] - - fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe) - # fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, params_filename='__params__') - print(self._name + ': inference model saved at ' + dirpath) - - conf = {} - for k, strv in self._save_protocol.items(): - exec('v={}'.format(strv)) - conf[k] = v - with open(os.path.join(dirpath, '__conf__'), 'w') as writer: - writer.write(json.dumps(conf, indent=1)) - - def load(self, infer_model_path=None): - if infer_model_path is None: - infer_model_path = self._save_infermodel_path - for k,v in json.load(open(os.path.join(infer_model_path, '__conf__'))).items(): - strv = self._save_protocol[k] - exec('{}=v'.format(strv)) - pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \ - fluid.io.load_inference_model(infer_model_path, self._exe) - # pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \ - # fluid.io.load_inference_model(infer_model_path, self._exe, params_filename='__params__') - print(self._name+': inference model loaded from ' + infer_model_path) - return pred_prog - - @property - def name(self): - return self._name - - @property - def Reader(self): - return self._Reader - - @Reader.setter - def Reader(self, cls): - assert base_reader.__name__ == cls.__bases__[-1].__name__, \ - "expect: {}, receive: {}.".format(base_reader.__name__, \ - cls.__bases__[-1].__name__) - self._Reader = cls - - @property - def Paradigm(self): - return self._Paradigm - - @Paradigm.setter - def Paradigm(self, cls): - assert base_paradigm.__name__ == cls.__bases__[-1].__name__, \ - "expect: {}, receive: {}.".format(base_paradigm.__name__, \ - cls.__bases__[-1].__name__) - self._Paradigm = cls - - @property - def config(self): - return self._config - - @property - def reader(self): - return self._reader - - @property - def pred_input(self): - return zip(*[self._pred_input_name_list, self._pred_input_varname_list]) - - @pred_input.setter - def pred_input(self, val): - assert isinstance(val, dict) - self._pred_input_name_list, self._pred_input_varname_list = \ - zip(*[[k, v.name] for k,v in val.items()]) - # print(self._pred_input_name_list) - - @property - def pred_fetch_list(self): - return [self._pred_fetch_name_list, self._pred_fetch_var_list] - - @property - def task_layer(self): - return self._task_layer - - @property - def is_first_target(self): - return self._is_first_target - - @is_first_target.setter - def is_first_target(self, value): - self._is_first_target = bool(value) - if self._is_first_target: - assert self._is_target, "ERROR: only target task could be set as main task." - if self._verbose and self._is_first_target: - print("{}: set as main task".format(self._name)) - - @property - def is_target(self): - if self._is_target is not None: - return self._is_target - else: - raise ValueError("{}: is_target is None".format(self._name)) - - @is_target.setter - def is_target(self, value): - self._is_target = bool(value) - if self._verbose: - if self._is_target: - print('{}: set as target task.'.format(self._name)) - else: - print('{}: set as aux task.'.format(self._name)) - - @property - def mix_ratio(self): - if self._mix_ratio is not None: - return self._mix_ratio - else: - raise ValueError("{}: mix_ratio is None".format(self._name)) - - @mix_ratio.setter - def mix_ratio(self, value): - self._mix_ratio = float(value) - if self._verbose: - print('{}: mix_ratio is set to {}'.format(self._name, self._mix_ratio)) - - @property - def expected_train_steps(self): - return self._expected_train_steps - - @expected_train_steps.setter - def expected_train_steps(self, value): - self._expected_train_steps = value - self._expected_train_epochs = value / float(self._steps_pur_epoch) - - @property - def expected_train_epochs(self): - return self._expected_train_epochs - - @property - def cur_train_epoch(self): - return self._cur_train_epoch - - @cur_train_epoch.setter - def cur_train_epoch(self, value): - self._cur_train_epoch = value - - @property - def cur_train_step(self): - return self._cur_train_step - - @cur_train_step.setter - def cur_train_step(self, value): - self._cur_train_step = value - if self._cur_train_step > self._steps_pur_epoch: - self._cur_train_epoch += 1 - self._cur_train_step = 1 - if self._is_target and self._cur_train_step + self._cur_train_epoch * self._steps_pur_epoch >= self._expected_train_steps: - self._train_finish = True - # fluid.io.save_inference_model(self._save_infermodel_path, ) - - @property - def steps_pur_epoch(self): - return self._steps_pur_epoch - - @steps_pur_epoch.setter - def steps_pur_epoch(self, value): - self._steps_pur_epoch = value - - @property - def train_finish(self): - return self._train_finish - - @property - def task_reuse_scope(self): - if self._task_reuse_scope is not None: - return self._task_reuse_scope - else: - raise ValueError("{}: task_reuse_scope is None".format(self._name)) - - @task_reuse_scope.setter - def task_reuse_scope(self, scope_name): - self._task_reuse_scope = str(scope_name) - if self._verbose: - print('{}: task_reuse_scope is set to {}'.format(self._name, self._task_reuse_scope)) - - - - - - - - - - -def check_instances(insts): - """to check ids, first_target""" - pass - -def _check_ids(): - pass - -def _check_targets(): - pass - -def _check_reuse_scopes(): - pass diff --git a/build/lib/paddlepalm/task_paradigm/__init__.py b/build/lib/paddlepalm/task_paradigm/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/task_paradigm/cls.py b/build/lib/paddlepalm/task_paradigm/cls.py deleted file mode 100644 index f69b817..0000000 --- a/build/lib/paddlepalm/task_paradigm/cls.py +++ /dev/null @@ -1,60 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.fluid as fluid -from paddlepalm.interface import task_paradigm -from paddle.fluid import layers - -class TaskParadigm(task_paradigm): - ''' - classification - ''' - def __init___(self, config, phase): - self._is_training = phase == 'train' - self.sent_emb_size = config['hidden_size'] - self.num_classes = config['n_classes'] - - @property - def inputs_attrs(self): - return {'bakcbone': {"sentence_emb": [-1, self.sent_emb_size], 'float32']}, - 'reader': {"label_ids": [[-1, 1], 'int64']}} - - @property - def outputs_attrs(self): - if self._is_training: - return {'loss': [[1], 'float32']} - else: - return {'logits': [-1, self.num_classes], 'float32'} - - def build(self, **inputs): - sent_emb = inputs['backbone']['sentence_emb'] - label_ids = inputs['reader']['label_ids'] - - logits = fluid.layers.fc( - input=ent_emb - size=self.num_classes, - param_attr=fluid.ParamAttr( - name="cls_out_w", - initializer=fluid.initializer.TruncatedNormal(scale=0.1)), - bias_attr=fluid.ParamAttr( - name="cls_out_b", initializer=fluid.initializer.Constant(0.))) - - loss = fluid.layers.softmax_with_cross_entropy( - logits=logits, label=label_ids) - loss = layers.mean(loss) - if self._is_training: - return {"loss": loss} - else: - return {"logits":logits} diff --git a/build/lib/paddlepalm/task_paradigm/match.py b/build/lib/paddlepalm/task_paradigm/match.py deleted file mode 100644 index 58bbf35..0000000 --- a/build/lib/paddlepalm/task_paradigm/match.py +++ /dev/null @@ -1,70 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.fluid as fluid -from paddlepalm.interface import task_paradigm -from paddle.fluid import layers - -class TaskParadigm(task_paradigm): - ''' - matching - ''' - def __init__(self, config, phase, backbone_config=None): - self._is_training = phase == 'train' - self._hidden_size = backbone_config['hidden_size'] - - @property - def inputs_attrs(self): - if self._is_training: - reader = {"label_ids": [[-1, 1], 'int64']} - else: - reader = {} - bb = {"sentence_pair_embedding": [[-1, self._hidden_size], 'float32']} - return {'reader': reader, 'backbone': bb} - - @property - def outputs_attrs(self): - if self._is_training: - return {"loss": [[1], 'float32']} - else: - return {"logits": [[-1, 1], 'float32']} - - def build(self, inputs): - if self._is_training: - labels = inputs["reader"]["label_ids"] - cls_feats = inputs["backbone"]["sentence_pair_embedding"] - - cls_feats = fluid.layers.dropout( - x=cls_feats, - dropout_prob=0.1, - dropout_implementation="upscale_in_train") - logits = fluid.layers.fc( - input=cls_feats, - size=2, - param_attr=fluid.ParamAttr( - name="cls_out_w", - initializer=fluid.initializer.TruncatedNormal(scale=0.02)), - bias_attr=fluid.ParamAttr( - name="cls_out_b", - initializer=fluid.initializer.Constant(0.))) - - if self._is_training: - ce_loss, probs = fluid.layers.softmax_with_cross_entropy( - logits=logits, label=labels, return_softmax=True) - loss = fluid.layers.mean(x=ce_loss) - return {'loss': loss} - else: - return {'logits': logits} - diff --git a/build/lib/paddlepalm/task_paradigm/mlm.py b/build/lib/paddlepalm/task_paradigm/mlm.py deleted file mode 100644 index 53c2866..0000000 --- a/build/lib/paddlepalm/task_paradigm/mlm.py +++ /dev/null @@ -1,115 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.fluid as fluid -from paddlepalm.interface import task_paradigm -from paddle.fluid import layers -from paddlepalm.backbone.utils.transformer import pre_process_layer - -class TaskParadigm(task_paradigm): - ''' - matching - ''' - def __init__(self, config, phase, backbone_config=None): - self._is_training = phase == 'train' - self._emb_size = backbone_config['hidden_size'] - self._hidden_size = backbone_config['hidden_size'] - self._vocab_size = backbone_config['vocab_size'] - self._hidden_act = backbone_config['hidden_act'] - self._initializer_range = backbone_config['initializer_range'] - - @property - def inputs_attrs(self): - reader = { - "mask_label": [[-1, 1], 'int64'], - "mask_pos": [[-1, 1], 'int64']} - if not self._is_training: - del reader['mask_label'] - bb = { - "encoder_outputs": [[-1, -1, self._hidden_size], 'float32'], - "embedding_table": [[-1, self._vocab_size, self._emb_size], 'float32']} - return {'reader': reader, 'backbone': bb} - - @property - def outputs_attrs(self): - if self._is_training: - return {"loss": [[1], 'float32']} - else: - return {"logits": [[-1], 'float32']} - - def build(self, inputs): - if self._is_training: - mask_label = inputs["reader"]["mask_label"] - mask_pos = inputs["reader"]["mask_pos"] - word_emb = inputs["backbone"]["embedding_table"] - enc_out = inputs["backbone"]["encoder_outputs"] - - emb_size = word_emb.shape[-1] - - _param_initializer = fluid.initializer.TruncatedNormal( - scale=self._initializer_range) - - mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32') - - reshaped_emb_out = fluid.layers.reshape( - x=enc_out, shape=[-1, emb_size]) - - # extract masked tokens' feature - mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos) - - # transform: fc - mask_trans_feat = fluid.layers.fc( - input=mask_feat, - size=emb_size, - act=self._hidden_act, - param_attr=fluid.ParamAttr( - name='mask_lm_trans_fc.w_0', - initializer=_param_initializer), - bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0')) - # transform: layer norm - mask_trans_feat = pre_process_layer( - mask_trans_feat, 'n', name='mask_lm_trans') - - mask_lm_out_bias_attr = fluid.ParamAttr( - name="mask_lm_out_fc.b_0", - initializer=fluid.initializer.Constant(value=0.0)) - - # print fluid.default_main_program().global_block() - - # fc_out = fluid.layers.matmul( - # x=mask_trans_feat, - # y=fluid.default_main_program().global_block().var( - # _word_emb_name), - # transpose_y=True) - - fc_out = fluid.layers.matmul( - x=mask_trans_feat, - y=word_emb, - transpose_y=True) - fc_out += fluid.layers.create_parameter( - shape=[self._vocab_size], - dtype='float32', - attr=mask_lm_out_bias_attr, - is_bias=True) - - if self._is_training: - mask_lm_loss = fluid.layers.softmax_with_cross_entropy( - logits=fc_out, label=mask_label) - loss = fluid.layers.mean(mask_lm_loss) - return {'loss': loss} - else: - return {'logits': fc_out} - - diff --git a/build/lib/paddlepalm/task_paradigm/mrc.py b/build/lib/paddlepalm/task_paradigm/mrc.py deleted file mode 100644 index 1d3642a..0000000 --- a/build/lib/paddlepalm/task_paradigm/mrc.py +++ /dev/null @@ -1,486 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import paddle.fluid as fluid -from paddlepalm.interface import task_paradigm -import collections -import numpy as np -import os -import math -import six -import paddlepalm.tokenizer.ernie_tokenizer as tokenization -import json - -RawResult = collections.namedtuple("RawResult", - ["unique_id", "start_logits", "end_logits"]) - -class TaskParadigm(task_paradigm): - """""" - - def __init__(self, config, phase, backbone_config=None): - - self._is_training = phase == 'train' - self._max_sequence_length = config['max_seq_len'] - self._hidden_size = backbone_config['hidden_size'] - self._pred_results = [] - - if phase == 'pred': - self._max_answer_length = config.get('max_answer_len', None) - self._null_score_diff_threshold = config.get('null_score_diff_threshold', 0.0) - self._n_best_size = config.get('n_best_size', 20) - self._pred_output_path = config.get('pred_output_path', None) - self._verbose = config.get('verbose', False) - self._with_negative = config.get('with_negative', False) - self._do_lower_case = config.get('do_lower_case', False) - - - @property - def inputs_attrs(self): - if self._is_training: - reader = {"start_positions": [[-1, 1], 'int64'], - "end_positions": [[-1, 1], 'int64']} - else: - reader = {'unique_ids': [[-1, 1], 'int64']} - bb = {"encoder_outputs": [[-1, -1, self._hidden_size], 'float32']} - return {'reader': reader, 'backbone': bb} - - @property - def epoch_inputs_attrs(self): - if not self._is_training: - from_reader = {'examples': None, 'features': None} - return {'reader': from_reader} - - @property - def outputs_attr(self): - if self._is_training: - return {'loss': [[1], 'float32']} - else: - return {'start_logits': [[-1, -1, 1], 'float32'], - 'end_logits': [[-1, -1, 1], 'float32'], - 'unique_ids': [[-1, 1], 'int64']} - - - def build(self, inputs): - if self._is_training: - start_positions = inputs['reader']['start_positions'] - end_positions = inputs['reader']['end_positions'] - else: - unique_id = inputs['reader']['unique_ids'] - - enc_out = inputs['backbone']['encoder_outputs'] - logits = fluid.layers.fc( - input=enc_out, - size=2, - num_flatten_dims=2, - param_attr=fluid.ParamAttr( - name="cls_squad_out_w", - initializer=fluid.initializer.TruncatedNormal(scale=0.02)), - bias_attr=fluid.ParamAttr( - name="cls_squad_out_b", initializer=fluid.initializer.Constant(0.))) - - logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1]) - start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0) - - def _compute_single_loss(logits, positions): - """Compute start/end loss for mrc model""" - loss = fluid.layers.softmax_with_cross_entropy( - logits=logits, label=positions) - loss = fluid.layers.mean(x=loss) - return loss - - if self._is_training: - start_loss = _compute_single_loss(start_logits, start_positions) - end_loss = _compute_single_loss(end_logits, end_positions) - total_loss = (start_loss + end_loss) / 2.0 - return {'loss': total_loss} - else: - return {'start_logits': start_logits, - 'end_logits': end_logits, - 'unique_ids': unique_id} - - - def postprocess(self, rt_outputs): - """this func will be called after each step(batch) of training/evaluating/predicting process.""" - if not self._is_training: - unique_ids = np.squeeze(rt_outputs['unique_ids'], -1) - start_logits = rt_outputs['start_logits'] - end_logits = rt_outputs['end_logits'] - for idx in range(len(unique_ids)): - - if unique_ids[idx] < 0: - continue - if len(self._pred_results) % 1000 == 0: - print("Predicting example: {}".format(len(self._pred_results))) - uid = int(unique_ids[idx]) - - s = [float(x) for x in start_logits[idx].flat] - e = [float(x) for x in end_logits[idx].flat] - self._pred_results.append( - RawResult( - unique_id=uid, - start_logits=s, - end_logits=e)) - - def epoch_postprocess(self, post_inputs): - """(optional interface) this func will be called after evaluation/predicting process and each epoch during training process.""" - - if not self._is_training: - if self._pred_output_path is None: - raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.') - examples = post_inputs['reader']['examples'] - features = post_inputs['reader']['features'] - if not os.path.exists(self._pred_output_path): - os.makedirs(self._pred_output_path) - output_prediction_file = os.path.join(self._pred_output_path, "predictions.json") - output_nbest_file = os.path.join(self._pred_output_path, "nbest_predictions.json") - output_null_log_odds_file = os.path.join(self._pred_output_path, "null_odds.json") - _write_predictions(examples, features, self._pred_results, - self._n_best_size, self._max_answer_length, - self._do_lower_case, output_prediction_file, - output_nbest_file, output_null_log_odds_file, - self._with_negative, - self._null_score_diff_threshold, self._verbose) - - -def _write_predictions(all_examples, all_features, all_results, n_best_size, - max_answer_length, do_lower_case, output_prediction_file, - output_nbest_file, output_null_log_odds_file, - with_negative, null_score_diff_threshold, - verbose): - """Write final predictions to the json file and log-odds of null if needed.""" - print("Writing predictions to: %s" % (output_prediction_file)) - print("Writing nbest to: %s" % (output_nbest_file)) - - example_index_to_features = collections.defaultdict(list) - for feature in all_features: - example_index_to_features[feature.example_index].append(feature) - - unique_id_to_result = {} - for result in all_results: - unique_id_to_result[result.unique_id] = result - - _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name - "PrelimPrediction", [ - "feature_index", "start_index", "end_index", "start_logit", - "end_logit" - ]) - - all_predictions = collections.OrderedDict() - all_nbest_json = collections.OrderedDict() - scores_diff_json = collections.OrderedDict() - - for (example_index, example) in enumerate(all_examples): - features = example_index_to_features[example_index] - - prelim_predictions = [] - # keep track of the minimum score of null start+end of position 0 - score_null = 1000000 # large and positive - min_null_feature_index = 0 # the paragraph slice with min mull score - null_start_logit = 0 # the start logit at the slice with min null score - null_end_logit = 0 # the end logit at the slice with min null score - for (feature_index, feature) in enumerate(features): - result = unique_id_to_result[feature.unique_id] - start_indexes = _get_best_indexes(result.start_logits, n_best_size) - end_indexes = _get_best_indexes(result.end_logits, n_best_size) - # if we could have irrelevant answers, get the min score of irrelevant - if with_negative: - feature_null_score = result.start_logits[0] + result.end_logits[ - 0] - if feature_null_score < score_null: - score_null = feature_null_score - min_null_feature_index = feature_index - null_start_logit = result.start_logits[0] - null_end_logit = result.end_logits[0] - for start_index in start_indexes: - for end_index in end_indexes: - # We could hypothetically create invalid predictions, e.g., predict - # that the start of the span is in the question. We throw out all - # invalid predictions. - if start_index >= len(feature.tokens): - continue - if end_index >= len(feature.tokens): - continue - if start_index not in feature.token_to_orig_map: - continue - if end_index not in feature.token_to_orig_map: - continue - if not feature.token_is_max_context.get(start_index, False): - continue - if end_index < start_index: - continue - length = end_index - start_index + 1 - if length > max_answer_length: - continue - prelim_predictions.append( - _PrelimPrediction( - feature_index=feature_index, - start_index=start_index, - end_index=end_index, - start_logit=result.start_logits[start_index], - end_logit=result.end_logits[end_index])) - - if with_negative: - prelim_predictions.append( - _PrelimPrediction( - feature_index=min_null_feature_index, - start_index=0, - end_index=0, - start_logit=null_start_logit, - end_logit=null_end_logit)) - prelim_predictions = sorted( - prelim_predictions, - key=lambda x: (x.start_logit + x.end_logit), - reverse=True) - - _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name - "NbestPrediction", ["text", "start_logit", "end_logit"]) - - seen_predictions = {} - nbest = [] - for pred in prelim_predictions: - if len(nbest) >= n_best_size: - break - feature = features[pred.feature_index] - if pred.start_index > 0: # this is a non-null prediction - tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1 - )] - orig_doc_start = feature.token_to_orig_map[pred.start_index] - orig_doc_end = feature.token_to_orig_map[pred.end_index] - orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + - 1)] - tok_text = " ".join(tok_tokens) - - # De-tokenize WordPieces that have been split off. - tok_text = tok_text.replace(" ##", "") - tok_text = tok_text.replace("##", "") - - # Clean whitespace - tok_text = tok_text.strip() - tok_text = " ".join(tok_text.split()) - orig_text = " ".join(orig_tokens) - - final_text = _get_final_text(tok_text, orig_text, do_lower_case, - verbose) - if final_text in seen_predictions: - continue - - seen_predictions[final_text] = True - else: - final_text = "" - seen_predictions[final_text] = True - - nbest.append( - _NbestPrediction( - text=final_text, - start_logit=pred.start_logit, - end_logit=pred.end_logit)) - - # if we didn't inlude the empty option in the n-best, inlcude it - if with_negative: - if "" not in seen_predictions: - nbest.append( - _NbestPrediction( - text="", - start_logit=null_start_logit, - end_logit=null_end_logit)) - # In very rare edge cases we could have no valid predictions. So we - # just create a nonce prediction in this case to avoid failure. - if not nbest: - nbest.append( - _NbestPrediction( - text="empty", start_logit=0.0, end_logit=0.0)) - - assert len(nbest) >= 1 - - total_scores = [] - best_non_null_entry = None - for entry in nbest: - total_scores.append(entry.start_logit + entry.end_logit) - if not best_non_null_entry: - if entry.text: - best_non_null_entry = entry - # debug - if best_non_null_entry is None: - print("Emmm..., sth wrong") - - probs = _compute_softmax(total_scores) - - nbest_json = [] - for (i, entry) in enumerate(nbest): - output = collections.OrderedDict() - output["text"] = entry.text - output["probability"] = probs[i] - output["start_logit"] = entry.start_logit - output["end_logit"] = entry.end_logit - nbest_json.append(output) - - assert len(nbest_json) >= 1 - - if not with_negative: - all_predictions[example.qas_id] = nbest_json[0]["text"] - else: - # predict "" iff the null score - the score of best non-null > threshold - score_diff = score_null - best_non_null_entry.start_logit - ( - best_non_null_entry.end_logit) - scores_diff_json[example.qas_id] = score_diff - if score_diff > null_score_diff_threshold: - all_predictions[example.qas_id] = "" - else: - all_predictions[example.qas_id] = best_non_null_entry.text - - all_nbest_json[example.qas_id] = nbest_json - - with open(output_prediction_file, "w") as writer: - writer.write(json.dumps(all_predictions, indent=4) + "\n") - - with open(output_nbest_file, "w") as writer: - writer.write(json.dumps(all_nbest_json, indent=4) + "\n") - - if with_negative: - with open(output_null_log_odds_file, "w") as writer: - writer.write(json.dumps(scores_diff_json, indent=4) + "\n") - - -def _get_final_text(pred_text, orig_text, do_lower_case, verbose): - """Project the tokenized prediction back to the original text.""" - - # When we created the data, we kept track of the alignment between original - # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So - # now `orig_text` contains the span of our original text corresponding to the - # span that we predicted. - # - # However, `orig_text` may contain extra characters that we don't want in - # our prediction. - # - # For example, let's say: - # pred_text = steve smith - # orig_text = Steve Smith's - # - # We don't want to return `orig_text` because it contains the extra "'s". - # - # We don't want to return `pred_text` because it's already been normalized - # (the MRQA eval script also does punctuation stripping/lower casing but - # our tokenizer does additional normalization like stripping accent - # characters). - # - # What we really want to return is "Steve Smith". - # - # Therefore, we have to apply a semi-complicated alignment heruistic between - # `pred_text` and `orig_text` to get a character-to-charcter alignment. This - # can fail in certain cases in which case we just return `orig_text`. - - def _strip_spaces(text): - ns_chars = [] - ns_to_s_map = collections.OrderedDict() - for (i, c) in enumerate(text): - if c == " ": - continue - ns_to_s_map[len(ns_chars)] = i - ns_chars.append(c) - ns_text = "".join(ns_chars) - return (ns_text, ns_to_s_map) - - # We first tokenize `orig_text`, strip whitespace from the result - # and `pred_text`, and check if they are the same length. If they are - # NOT the same length, the heuristic has failed. If they are the same - # length, we assume the characters are one-to-one aligned. - tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) - - tok_text = " ".join(tokenizer.tokenize(orig_text)) - - start_position = tok_text.find(pred_text) - if start_position == -1: - if verbose: - print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) - return orig_text - end_position = start_position + len(pred_text) - 1 - - (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) - (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) - - if len(orig_ns_text) != len(tok_ns_text): - if verbose: - print("Length not equal after stripping spaces: '%s' vs '%s'", - orig_ns_text, tok_ns_text) - return orig_text - - # We then project the characters in `pred_text` back to `orig_text` using - # the character-to-character alignment. - tok_s_to_ns_map = {} - for (i, tok_index) in six.iteritems(tok_ns_to_s_map): - tok_s_to_ns_map[tok_index] = i - - orig_start_position = None - if start_position in tok_s_to_ns_map: - ns_start_position = tok_s_to_ns_map[start_position] - if ns_start_position in orig_ns_to_s_map: - orig_start_position = orig_ns_to_s_map[ns_start_position] - - if orig_start_position is None: - if verbose: - print("Couldn't map start position") - return orig_text - - orig_end_position = None - if end_position in tok_s_to_ns_map: - ns_end_position = tok_s_to_ns_map[end_position] - if ns_end_position in orig_ns_to_s_map: - orig_end_position = orig_ns_to_s_map[ns_end_position] - - if orig_end_position is None: - if verbose: - print("Couldn't map end position") - return orig_text - - output_text = orig_text[orig_start_position:(orig_end_position + 1)] - return output_text - - -def _get_best_indexes(logits, n_best_size): - """Get the n-best logits from a list.""" - index_and_score = sorted( - enumerate(logits), key=lambda x: x[1], reverse=True) - - best_indexes = [] - for i in range(len(index_and_score)): - if i >= n_best_size: - break - best_indexes.append(index_and_score[i][0]) - return best_indexes - - -def _compute_softmax(scores): - """Compute softmax probability over raw logits.""" - if not scores: - return [] - - max_score = None - for score in scores: - if max_score is None or score > max_score: - max_score = score - - exp_scores = [] - total_sum = 0.0 - for score in scores: - x = math.exp(score - max_score) - exp_scores.append(x) - total_sum += x - - probs = [] - for score in exp_scores: - probs.append(score / total_sum) - return probs - - diff --git a/build/lib/paddlepalm/tokenizer/__init__.py b/build/lib/paddlepalm/tokenizer/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/tokenizer/bert_tokenizer.py b/build/lib/paddlepalm/tokenizer/bert_tokenizer.py deleted file mode 100644 index f4cefd0..0000000 --- a/build/lib/paddlepalm/tokenizer/bert_tokenizer.py +++ /dev/null @@ -1,374 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Tokenization classes.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import unicodedata -import six - - -def convert_to_unicode(text): - """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" - if six.PY3: - if isinstance(text, str): - return text - elif isinstance(text, bytes): - return text.decode("utf-8", "ignore") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - elif six.PY2: - if isinstance(text, str): - return text.decode("utf-8", "ignore") - elif isinstance(text, unicode): - return text - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - else: - raise ValueError("Not running on Python2 or Python 3?") - - -def printable_text(text): - """Returns text encoded in a way suitable for print or `tf.logging`.""" - - # These functions want `str` for both Python2 and Python3, but in one case - # it's a Unicode string and in the other it's a byte string. - if six.PY3: - if isinstance(text, str): - return text - elif isinstance(text, bytes): - return text.decode("utf-8", "ignore") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - elif six.PY2: - if isinstance(text, str): - return text - elif isinstance(text, unicode): - return text.encode("utf-8") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - else: - raise ValueError("Not running on Python2 or Python 3?") - - -def load_vocab(vocab_file): - """Loads a vocabulary file into a dictionary.""" - vocab = collections.OrderedDict() - fin = open(vocab_file) - for num, line in enumerate(fin): - items = convert_to_unicode(line.strip()).split("\t") - if len(items) > 2: - break - token = items[0] - index = items[1] if len(items) == 2 else num - token = token.strip() - vocab[token] = int(index) - return vocab - - -def convert_by_vocab(vocab, items): - """Converts a sequence of [tokens|ids] using the vocab.""" - output = [] - for item in items: - output.append(vocab[item]) - return output - - -def convert_tokens_to_ids(vocab, tokens): - return convert_by_vocab(vocab, tokens) - - -def convert_ids_to_tokens(inv_vocab, ids): - return convert_by_vocab(inv_vocab, ids) - - -def whitespace_tokenize(text): - """Runs basic whitespace cleaning and splitting on a peice of text.""" - text = text.strip() - if not text: - return [] - tokens = text.split() - return tokens - - -class FullTokenizer(object): - """Runs end-to-end tokenziation.""" - - def __init__(self, vocab_file, do_lower_case=True): - self.vocab = load_vocab(vocab_file) - self.inv_vocab = {v: k for k, v in self.vocab.items()} - self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - - def tokenize(self, text): - split_tokens = [] - for token in self.basic_tokenizer.tokenize(text): - for sub_token in self.wordpiece_tokenizer.tokenize(token): - split_tokens.append(sub_token) - - return split_tokens - - def convert_tokens_to_ids(self, tokens): - return convert_by_vocab(self.vocab, tokens) - - def convert_ids_to_tokens(self, ids): - return convert_by_vocab(self.inv_vocab, ids) - - -class CharTokenizer(object): - """Runs end-to-end tokenziation.""" - - def __init__(self, vocab_file, do_lower_case=True): - self.vocab = load_vocab(vocab_file) - self.inv_vocab = {v: k for k, v in self.vocab.items()} - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - - def tokenize(self, text): - split_tokens = [] - for token in text.lower().split(" "): - for sub_token in self.wordpiece_tokenizer.tokenize(token): - split_tokens.append(sub_token) - - return split_tokens - - def convert_tokens_to_ids(self, tokens): - return convert_by_vocab(self.vocab, tokens) - - def convert_ids_to_tokens(self, ids): - return convert_by_vocab(self.inv_vocab, ids) - - -class BasicTokenizer(object): - """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" - - def __init__(self, do_lower_case=True): - """Constructs a BasicTokenizer. - - Args: - do_lower_case: Whether to lower case the input. - """ - self.do_lower_case = do_lower_case - self._never_lowercase = ['[UNK]', '[SEP]', '[PAD]', '[CLS]', '[MASK]'] - - def tokenize(self, text): - """Tokenizes a piece of text.""" - text = convert_to_unicode(text) - text = self._clean_text(text) - - # This was added on November 1st, 2018 for the multilingual and Chinese - # models. This is also applied to the English models now, but it doesn't - # matter since the English models were not trained on any Chinese data - # and generally don't have any Chinese data in them (there are Chinese - # characters in the vocabulary because Wikipedia does have some Chinese - # words in the English Wikipedia.). - text = self._tokenize_chinese_chars(text) - - orig_tokens = whitespace_tokenize(text) - split_tokens = [] - for token in orig_tokens: - if self.do_lower_case and token not in self._never_lowercase: - token = token.lower() - token = self._run_strip_accents(token) - if token in self._never_lowercase: - split_tokens.extend([token]) - else: - split_tokens.extend(self._run_split_on_punc(token)) - - output_tokens = whitespace_tokenize(" ".join(split_tokens)) - return output_tokens - - def _run_strip_accents(self, text): - """Strips accents from a piece of text.""" - text = unicodedata.normalize("NFD", text) - output = [] - for char in text: - cat = unicodedata.category(char) - if cat == "Mn": - continue - output.append(char) - return "".join(output) - - def _run_split_on_punc(self, text): - """Splits punctuation on a piece of text.""" - chars = list(text) - i = 0 - start_new_word = True - output = [] - while i < len(chars): - char = chars[i] - if _is_punctuation(char): - output.append([char]) - start_new_word = True - else: - if start_new_word: - output.append([]) - start_new_word = False - output[-1].append(char) - i += 1 - - return ["".join(x) for x in output] - - def _tokenize_chinese_chars(self, text): - """Adds whitespace around any CJK character.""" - output = [] - for char in text: - cp = ord(char) - if self._is_chinese_char(cp): - output.append(" ") - output.append(char) - output.append(" ") - else: - output.append(char) - return "".join(output) - - def _is_chinese_char(self, cp): - """Checks whether CP is the codepoint of a CJK character.""" - # This defines a "chinese character" as anything in the CJK Unicode block: - # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) - # - # Note that the CJK Unicode block is NOT all Japanese and Korean characters, - # despite its name. The modern Korean Hangul alphabet is a different block, - # as is Japanese Hiragana and Katakana. Those alphabets are used to write - # space-separated words, so they are not treated specially and handled - # like the all of the other languages. - if ((cp >= 0x4E00 and cp <= 0x9FFF) or # - (cp >= 0x3400 and cp <= 0x4DBF) or # - (cp >= 0x20000 and cp <= 0x2A6DF) or # - (cp >= 0x2A700 and cp <= 0x2B73F) or # - (cp >= 0x2B740 and cp <= 0x2B81F) or # - (cp >= 0x2B820 and cp <= 0x2CEAF) or - (cp >= 0xF900 and cp <= 0xFAFF) or # - (cp >= 0x2F800 and cp <= 0x2FA1F)): # - return True - - return False - - def _clean_text(self, text): - """Performs invalid character removal and whitespace cleanup on text.""" - output = [] - for char in text: - cp = ord(char) - if cp == 0 or cp == 0xfffd or _is_control(char): - continue - if _is_whitespace(char): - output.append(" ") - else: - output.append(char) - return "".join(output) - - -class WordpieceTokenizer(object): - """Runs WordPiece tokenziation.""" - - def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): - self.vocab = vocab - self.unk_token = unk_token - self.max_input_chars_per_word = max_input_chars_per_word - - def tokenize(self, text): - """Tokenizes a piece of text into its word pieces. - - This uses a greedy longest-match-first algorithm to perform tokenization - using the given vocabulary. - - For example: - input = "unaffable" - output = ["un", "##aff", "##able"] - - Args: - text: A single token or whitespace separated tokens. This should have - already been passed through `BasicTokenizer. - - Returns: - A list of wordpiece tokens. - """ - - text = convert_to_unicode(text) - - output_tokens = [] - for token in whitespace_tokenize(text): - chars = list(token) - if len(chars) > self.max_input_chars_per_word: - output_tokens.append(self.unk_token) - continue - - is_bad = False - start = 0 - sub_tokens = [] - while start < len(chars): - end = len(chars) - cur_substr = None - while start < end: - substr = "".join(chars[start:end]) - if start > 0: - substr = "##" + substr - if substr in self.vocab: - cur_substr = substr - break - end -= 1 - if cur_substr is None: - is_bad = True - break - sub_tokens.append(cur_substr) - start = end - - if is_bad: - output_tokens.append(self.unk_token) - else: - output_tokens.extend(sub_tokens) - return output_tokens - - -def _is_whitespace(char): - """Checks whether `chars` is a whitespace character.""" - # \t, \n, and \r are technically contorl characters but we treat them - # as whitespace since they are generally considered as such. - if char == " " or char == "\t" or char == "\n" or char == "\r": - return True - cat = unicodedata.category(char) - if cat == "Zs": - return True - return False - - -def _is_control(char): - """Checks whether `chars` is a control character.""" - # These are technically control characters but we count them as whitespace - # characters. - if char == "\t" or char == "\n" or char == "\r": - return False - cat = unicodedata.category(char) - if cat.startswith("C"): - return True - return False - - -def _is_punctuation(char): - """Checks whether `chars` is a punctuation character.""" - cp = ord(char) - # We treat all non-letter/number ASCII as punctuation. - # Characters such as "^", "$", and "`" are not in the Unicode - # Punctuation class but we treat them as punctuation anyways, for - # consistency. - if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or - (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): - return True - cat = unicodedata.category(char) - if cat.startswith("P"): - return True - return False diff --git a/build/lib/paddlepalm/tokenizer/ernie_tokenizer.py b/build/lib/paddlepalm/tokenizer/ernie_tokenizer.py deleted file mode 100644 index 2e6b044..0000000 --- a/build/lib/paddlepalm/tokenizer/ernie_tokenizer.py +++ /dev/null @@ -1,417 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Tokenization classes.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from __future__ import unicode_literals -from __future__ import absolute_import - -from io import open - -import collections -import unicodedata -import six - - -def convert_to_unicode(text): - """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" - if six.PY3: - if isinstance(text, str): - return text - elif isinstance(text, bytes): - return text.decode("utf-8", "ignore") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - elif six.PY2: - if isinstance(text, str): - return text.decode("utf-8", "ignore") - elif isinstance(text, unicode): - return text - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - else: - raise ValueError("Not running on Python2 or Python 3?") - - -def printable_text(text): - """Returns text encoded in a way suitable for print or `tf.logging`.""" - - # These functions want `str` for both Python2 and Python3, but in one case - # it's a Unicode string and in the other it's a byte string. - if six.PY3: - if isinstance(text, str): - return text - elif isinstance(text, bytes): - return text.decode("utf-8", "ignore") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - elif six.PY2: - if isinstance(text, str): - return text - elif isinstance(text, unicode): - return text.encode("utf-8") - else: - raise ValueError("Unsupported string type: %s" % (type(text))) - else: - raise ValueError("Not running on Python2 or Python 3?") - - -def load_vocab(vocab_file): - """Loads a vocabulary file into a dictionary.""" - vocab = collections.OrderedDict() - with open(vocab_file, encoding='utf8') as fin: - for num, line in enumerate(fin): - items = convert_to_unicode(line.strip()).split("\t") - if len(items) > 2: - break - token = items[0] - index = items[1] if len(items) == 2 else num - token = token.strip() - vocab[token] = int(index) - return vocab - - -def convert_by_vocab(vocab, items): - """Converts a sequence of [tokens|ids] using the vocab.""" - output = [] - for item in items: - output.append(vocab[item]) - return output - - -def convert_tokens_to_ids(vocab, tokens): - return convert_by_vocab(vocab, tokens) - - -def convert_ids_to_tokens(inv_vocab, ids): - return convert_by_vocab(inv_vocab, ids) - - -def whitespace_tokenize(text): - """Runs basic whitespace cleaning and splitting on a peice of text.""" - text = text.strip() - if not text: - return [] - tokens = text.split() - return tokens - - -class FullTokenizer(object): - """Runs end-to-end tokenziation.""" - - def __init__(self, vocab_file, do_lower_case=True): - self.vocab = load_vocab(vocab_file) - self.inv_vocab = {v: k for k, v in self.vocab.items()} - self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - - def tokenize(self, text): - split_tokens = [] - for token in self.basic_tokenizer.tokenize(text): - for sub_token in self.wordpiece_tokenizer.tokenize(token): - split_tokens.append(sub_token) - - return split_tokens - - def convert_tokens_to_ids(self, tokens): - return convert_by_vocab(self.vocab, tokens) - - def convert_ids_to_tokens(self, ids): - return convert_by_vocab(self.inv_vocab, ids) - - -class CharTokenizer(object): - """Runs end-to-end tokenziation.""" - - def __init__(self, vocab_file, do_lower_case=True): - self.vocab = load_vocab(vocab_file) - self.inv_vocab = {v: k for k, v in self.vocab.items()} - self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) - - def tokenize(self, text): - split_tokens = [] - for token in text.lower().split(" "): - for sub_token in self.wordpiece_tokenizer.tokenize(token): - split_tokens.append(sub_token) - - return split_tokens - - def convert_tokens_to_ids(self, tokens): - return convert_by_vocab(self.vocab, tokens) - - def convert_ids_to_tokens(self, ids): - return convert_by_vocab(self.inv_vocab, ids) - - -class BasicTokenizer(object): - """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" - - def __init__(self, do_lower_case=True): - """Constructs a BasicTokenizer. - Args: - do_lower_case: Whether to lower case the input. - """ - self.do_lower_case = do_lower_case - - def tokenize(self, text): - """Tokenizes a piece of text.""" - text = convert_to_unicode(text) - text = self._clean_text(text) - - # This was added on November 1st, 2018 for the multilingual and Chinese - # models. This is also applied to the English models now, but it doesn't - # matter since the English models were not trained on any Chinese data - # and generally don't have any Chinese data in them (there are Chinese - # characters in the vocabulary because Wikipedia does have some Chinese - # words in the English Wikipedia.). - text = self._tokenize_chinese_chars(text) - - orig_tokens = whitespace_tokenize(text) - split_tokens = [] - for token in orig_tokens: - if self.do_lower_case: - token = token.lower() - token = self._run_strip_accents(token) - split_tokens.extend(self._run_split_on_punc(token)) - - output_tokens = whitespace_tokenize(" ".join(split_tokens)) - return output_tokens - - def _run_strip_accents(self, text): - """Strips accents from a piece of text.""" - text = unicodedata.normalize("NFD", text) - output = [] - for char in text: - cat = unicodedata.category(char) - if cat == "Mn": - continue - output.append(char) - return "".join(output) - - def _run_split_on_punc(self, text): - """Splits punctuation on a piece of text.""" - chars = list(text) - i = 0 - start_new_word = True - output = [] - while i < len(chars): - char = chars[i] - if _is_punctuation(char): - output.append([char]) - start_new_word = True - else: - if start_new_word: - output.append([]) - start_new_word = False - output[-1].append(char) - i += 1 - - return ["".join(x) for x in output] - - def _tokenize_chinese_chars(self, text): - """Adds whitespace around any CJK character.""" - output = [] - for char in text: - cp = ord(char) - if self._is_chinese_char(cp): - output.append(" ") - output.append(char) - output.append(" ") - else: - output.append(char) - return "".join(output) - - def _is_chinese_char(self, cp): - """Checks whether CP is the codepoint of a CJK character.""" - # This defines a "chinese character" as anything in the CJK Unicode block: - # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) - # - # Note that the CJK Unicode block is NOT all Japanese and Korean characters, - # despite its name. The modern Korean Hangul alphabet is a different block, - # as is Japanese Hiragana and Katakana. Those alphabets are used to write - # space-separated words, so they are not treated specially and handled - # like the all of the other languages. - if ((cp >= 0x4E00 and cp <= 0x9FFF) or # - (cp >= 0x3400 and cp <= 0x4DBF) or # - (cp >= 0x20000 and cp <= 0x2A6DF) or # - (cp >= 0x2A700 and cp <= 0x2B73F) or # - (cp >= 0x2B740 and cp <= 0x2B81F) or # - (cp >= 0x2B820 and cp <= 0x2CEAF) or - (cp >= 0xF900 and cp <= 0xFAFF) or # - (cp >= 0x2F800 and cp <= 0x2FA1F)): # - return True - - return False - - def _clean_text(self, text): - """Performs invalid character removal and whitespace cleanup on text.""" - output = [] - for char in text: - cp = ord(char) - if cp == 0 or cp == 0xfffd or _is_control(char): - continue - if _is_whitespace(char): - output.append(" ") - else: - output.append(char) - return "".join(output) - - -class WordpieceTokenizer(object): - """Runs WordPiece tokenziation.""" - - def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): - self.vocab = vocab - self.unk_token = unk_token - self.max_input_chars_per_word = max_input_chars_per_word - - def tokenize(self, text): - """Tokenizes a piece of text into its word pieces. - This uses a greedy longest-match-first algorithm to perform tokenization - using the given vocabulary. - For example: - input = "unaffable" - output = ["un", "##aff", "##able"] - Args: - text: A single token or whitespace separated tokens. This should have - already been passed through `BasicTokenizer. - Returns: - A list of wordpiece tokens. - """ - - text = convert_to_unicode(text) - - output_tokens = [] - for token in whitespace_tokenize(text): - chars = list(token) - if len(chars) > self.max_input_chars_per_word: - output_tokens.append(self.unk_token) - continue - - is_bad = False - start = 0 - sub_tokens = [] - while start < len(chars): - end = len(chars) - cur_substr = None - while start < end: - substr = "".join(chars[start:end]) - if start > 0: - substr = "##" + substr - if substr in self.vocab: - cur_substr = substr - break - end -= 1 - if cur_substr is None: - is_bad = True - break - sub_tokens.append(cur_substr) - start = end - - if is_bad: - output_tokens.append(self.unk_token) - else: - output_tokens.extend(sub_tokens) - return output_tokens - - -def _is_whitespace(char): - """Checks whether `chars` is a whitespace character.""" - # \t, \n, and \r are technically contorl characters but we treat them - # as whitespace since they are generally considered as such. - if char == " " or char == "\t" or char == "\n" or char == "\r": - return True - cat = unicodedata.category(char) - if cat == "Zs": - return True - return False - - -def _is_control(char): - """Checks whether `chars` is a control character.""" - # These are technically control characters but we count them as whitespace - # characters. - if char == "\t" or char == "\n" or char == "\r": - return False - cat = unicodedata.category(char) - if cat.startswith("C"): - return True - return False - - -def _is_punctuation(char): - """Checks whether `chars` is a punctuation character.""" - cp = ord(char) - # We treat all non-letter/number ASCII as punctuation. - # Characters such as "^", "$", and "`" are not in the Unicode - # Punctuation class but we treat them as punctuation anyways, for - # consistency. - if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or - (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): - return True - cat = unicodedata.category(char) - if cat.startswith("P"): - return True - return False - - -def tokenize_chinese_chars(text): - """Adds whitespace around any CJK character.""" - - def _is_chinese_char(cp): - """Checks whether CP is the codepoint of a CJK character.""" - # This defines a "chinese character" as anything in the CJK Unicode block: - # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) - # - # Note that the CJK Unicode block is NOT all Japanese and Korean characters, - # despite its name. The modern Korean Hangul alphabet is a different block, - # as is Japanese Hiragana and Katakana. Those alphabets are used to write - # space-separated words, so they are not treated specially and handled - # like the all of the other languages. - if ((cp >= 0x4E00 and cp <= 0x9FFF) or # - (cp >= 0x3400 and cp <= 0x4DBF) or # - (cp >= 0x20000 and cp <= 0x2A6DF) or # - (cp >= 0x2A700 and cp <= 0x2B73F) or # - (cp >= 0x2B740 and cp <= 0x2B81F) or # - (cp >= 0x2B820 and cp <= 0x2CEAF) or - (cp >= 0xF900 and cp <= 0xFAFF) or # - (cp >= 0x2F800 and cp <= 0x2FA1F)): # - return True - - return False - - def _is_whitespace(c): - if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: - return True - return False - - output = [] - buff = "" - for char in text: - cp = ord(char) - if _is_chinese_char(cp) or _is_whitespace(char): - if buff != "": - output.append(buff) - buff = "" - output.append(char) - else: - buff += char - - if buff != "": - output.append(buff) - - return output diff --git a/build/lib/paddlepalm/utils/__init__.py b/build/lib/paddlepalm/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/build/lib/paddlepalm/utils/config_helper.py b/build/lib/paddlepalm/utils/config_helper.py deleted file mode 100644 index e00f473..0000000 --- a/build/lib/paddlepalm/utils/config_helper.py +++ /dev/null @@ -1,311 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import sys -import argparse -import json -import yaml -import six -import logging - -logging_only_message = "%(message)s" -logging_details = "%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s" - - -class JsonConfig(object): - """ - A high-level api for handling json configure file. - """ - - def __init__(self, config_path): - self._config_dict = self._parse(config_path) - - def _parse(self, config_path): - try: - with open(config_path) as json_file: - config_dict = json.load(json_file) - assert isinstance(config_dict, dict), "Object in {} is NOT a dict.".format(config_path) - except: - raise IOError("Error in parsing bert model config file '%s'" % - config_path) - else: - return config_dict - - def __getitem__(self, key): - return self._config_dict[key] - - def asdict(self): - return self._config_dict - - def print_config(self): - for arg, value in sorted(six.iteritems(self._config_dict)): - print('%s: %s' % (arg, value)) - print('------------------------------------------------') - - -class ArgumentGroup(object): - def __init__(self, parser, title, des): - self._group = parser.add_argument_group(title=title, description=des) - - def add_arg(self, name, type, default, help, **kwargs): - type = str2bool if type == bool else type - self._group.add_argument( - "--" + name, - default=default, - type=type, - help=help + ' Default: %(default)s.', - **kwargs) - - -class ArgConfig(object): - """ - A high-level api for handling argument configs. - """ - - def __init__(self): - parser = argparse.ArgumentParser() - - train_g = ArgumentGroup(parser, "training", "training options.") - train_g.add_arg("epoch", int, 3, "Number of epoches for fine-tuning.") - train_g.add_arg("learning_rate", float, 5e-5, - "Learning rate used to train with warmup.") - train_g.add_arg( - "lr_scheduler", - str, - "linear_warmup_decay", - "scheduler of learning rate.", - choices=['linear_warmup_decay', 'noam_decay']) - train_g.add_arg("weight_decay", float, 0.01, - "Weight decay rate for L2 regularizer.") - train_g.add_arg( - "warmup_proportion", float, 0.1, - "Proportion of training steps to perform linear learning rate warmup for." - ) - train_g.add_arg("save_steps", int, 1000, - "The steps interval to save checkpoints.") - train_g.add_arg( - "loss_scaling", float, 1.0, - "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled." - ) - train_g.add_arg("pred_dir", str, None, - "Path to save the prediction results") - - log_g = ArgumentGroup(parser, "logging", "logging related.") - log_g.add_arg("skip_steps", int, 10, - "The steps interval to print loss.") - log_g.add_arg("verbose", bool, False, "Whether to output verbose log.") - - run_type_g = ArgumentGroup(parser, "run_type", "running type options.") - run_type_g.add_arg("use_cuda", bool, True, - "If set, use GPU for training.") - run_type_g.add_arg( - "use_fast_executor", bool, False, - "If set, use fast parallel executor (in experiment).") - run_type_g.add_arg( - "num_iteration_per_drop_scope", int, 1, - "Ihe iteration intervals to clean up temporary variables.") - run_type_g.add_arg("do_train", bool, True, - "Whether to perform training.") - run_type_g.add_arg("do_predict", bool, True, - "Whether to perform prediction.") - - custom_g = ArgumentGroup(parser, "customize", "customized options.") - - self.custom_g = custom_g - - self.parser = parser - - def add_arg(self, name, dtype, default, descrip): - self.custom_g.add_arg(name, dtype, default, descrip) - - def build_conf(self): - return self.parser.parse_args() - - -def str2bool(v): - # because argparse does not support to parse "true, False" as python - # boolean directly - return v.lower() in ("true", "t", "1") - - -def print_arguments(args, log=None): - if not log: - print('----------- Configuration Arguments -----------') - for arg, value in sorted(six.iteritems(vars(args))): - print('%s: %s' % (arg, value)) - print('------------------------------------------------') - else: - log.info('----------- Configuration Arguments -----------') - for arg, value in sorted(six.iteritems(vars(args))): - log.info('%s: %s' % (arg, value)) - log.info('------------------------------------------------') - - -class PDConfig(object): - """ - A high-level API for managing configuration files in PaddlePaddle. - Can jointly work with command-line-arugment, json files and yaml files. - """ - - def __init__(self, json_file=None, yaml_file=None, fuse_args=True): - """ - Init funciton for PDConfig. - json_file: the path to the json configure file. - yaml_file: the path to the yaml configure file. - fuse_args: if fuse the json/yaml configs with argparse. - """ - - if json_file is not None and yaml_file is not None: - raise Warning( - "json_file and yaml_file can not co-exist for now. please only use one configure file type." - ) - return - - self.args = None - self.arg_config = {} - self.json_config = {} - self.yaml_config = {} - - parser = argparse.ArgumentParser() - - self.yaml_g = ArgumentGroup(parser, "yaml", "options from yaml.") - self.json_g = ArgumentGroup(parser, "json", "options from json.") - self.com_g = ArgumentGroup(parser, "custom", "customized options.") - - self.parser = parser - - if json_file is not None: - assert isinstance(json_file, str) - self.load_json(json_file, fuse_args=fuse_args) - - if yaml_file is not None: - assert isinstance(yaml_file, str) or isinstance(yaml_file, list) - self.load_yaml(yaml_file, fuse_args=fuse_args) - - def load_json(self, file_path, fuse_args=True): - - if not os.path.exists(file_path): - raise Warning("the json file %s does not exist." % file_path) - return - - with open(file_path, "r") as fin: - self.json_config = json.loads(fin.read()) - fin.close() - - if fuse_args: - for name in self.json_config: - if not isinstance(self.json_config[name], int) \ - and not isinstance(self.json_config[name], float) \ - and not isinstance(self.json_config[name], str) \ - and not isinstance(self.json_config[name], bool): - - continue - - self.json_g.add_arg(name, - type(self.json_config[name]), - self.json_config[name], - "This is from %s" % file_path) - - def load_yaml(self, file_path_list, fuse_args=True): - - if isinstance(file_path_list, str): - file_path_list = [file_path_list] - for file_path in file_path_list: - if not os.path.exists(file_path): - raise Warning("the yaml file %s does not exist." % file_path) - return - - with open(file_path, "r") as fin: - self.yaml_config = yaml.load(fin, Loader=yaml.SafeLoader) - if fuse_args: - for name in self.yaml_config: - if not isinstance(self.yaml_config[name], int) \ - and not isinstance(self.yaml_config[name], float) \ - and not isinstance(self.yaml_config[name], str) \ - and not isinstance(self.yaml_config[name], bool): - - continue - - self.yaml_g.add_arg(name, - type(self.yaml_config[name]), - self.yaml_config[name], - "This is from %s" % file_path) - - def build(self): - self.args = self.parser.parse_args() - self.arg_config = vars(self.args) - - def asdict(self): - return self.arg_config - - def __add__(self, new_arg): - assert isinstance(new_arg, list) or isinstance(new_arg, tuple) - assert len(new_arg) >= 3 - assert self.args is None - - name = new_arg[0] - dtype = new_arg[1] - dvalue = new_arg[2] - desc = new_arg[3] if len( - new_arg) == 4 else "Description is not provided." - - self.com_g.add_arg(name, dtype, dvalue, desc) - - return self - - def __getattr__(self, name): - if name in self.arg_config: - return self.arg_config[name] - - if name in self.json_config: - return self.json_config[name] - - if name in self.yaml_config: - return self.yaml_config[name] - - raise Warning("The argument %s is not defined." % name) - - def Print(self): - - print("-" * 70) - for name in self.arg_config: - print("{: <25}\t{}".format(str(name), str(self.arg_config[name]))) - - for name in self.json_config: - if name not in self.arg_config: - print("{: <25}\t{}" % - (str(name), str(self.json_config[name]))) - - for name in self.yaml_config: - if name not in self.arg_config: - print("{: <25}\t{}" % - (str(name), str(self.yaml_config[name]))) - - print("-" * 70) - - -if __name__ == "__main__": - pd_config = PDConfig(yaml_file="./test/bert_config.yaml") - pd_config += ("my_age", int, 18, "I am forever 18.") - pd_config.build() - - print(pd_config.do_train) - print(pd_config.hidden_size) - print(pd_config.my_age) diff --git a/build/lib/paddlepalm/utils/print_helper.py b/build/lib/paddlepalm/utils/print_helper.py deleted file mode 100644 index 842e779..0000000 --- a/build/lib/paddlepalm/utils/print_helper.py +++ /dev/null @@ -1,31 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -MAXLEN = 70 -def print_dict(dic, title=""): - - if title: - title = ' ' + title + ' ' - left_len = (MAXLEN - len(title)) // 2 - title = '-' * left_len + title - right_len = MAXLEN - len(title) - title = title + '-' * right_len - else: - title = '-' * MAXLEN - print(title) - for name in dic: - print("{: <25}\t{}".format(str(name), str(dic[name]))) - print("") - # print("-" * MAXLEN + '\n') diff --git a/build/lib/paddlepalm/utils/reader_helper.py b/build/lib/paddlepalm/utils/reader_helper.py deleted file mode 100644 index c9e5f88..0000000 --- a/build/lib/paddlepalm/utils/reader_helper.py +++ /dev/null @@ -1,226 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import sys -import random -import numpy as np -import paddle -from paddle import fluid -from paddle.fluid import layers - - -def _check_and_adapt_shape_dtype(rt_val, attr, message=""): - if not isinstance(rt_val, np.ndarray): - rt_val = np.array(rt_val) - assert rt_val.dtype != np.dtype('O'), "yielded data is not a valid tensor(number of elements on some dimension may differ)." - if rt_val.dtype == np.dtype('float64'): - rt_val = rt_val.astype('float32') - - shape, dtype = attr - assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype)) - assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim) - for rt, exp in zip(rt_val.shape, shape): - if exp is None or exp < 0: - continue - assert rt == exp, "yielded data shape is not consistent with attr settings.Expected:{}Actual:{}".format(exp, rt) - return rt_val - - -def _zero_batch(attrs): - pos_attrs = [] - for shape, dtype in attrs: - pos_shape = [size if size and size > 0 else 1 for size in shape] - pos_attrs.append([pos_shape, dtype]) - - return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs] - - -def _zero_batch_x(attrs, batch_size): - pos_attrs = [] - for shape, dtype in attrs: - # pos_shape = [size if size and size > 0 else 5 for size in shape] - pos_shape = [size for size in shape] - if pos_shape[0] == -1: - pos_shape[0] = batch_size - if pos_shape[1] == -1: - pos_shape[1] = 512 # max seq len - pos_attrs.append([pos_shape, dtype]) - - return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs] - - -def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n_prefetch=1): - inputs = [] - ret = {} - for name, shape, dtype in input_attrs: - p = layers.data(name, shape=shape, dtype=dtype) - ret[name] = p - inputs.append(p) - - if async: - assert iterator_fn is not None, "iterator_fn is needed for building async input layer." - # reader = fluid.io.PyReader(inputs, capacity=dev_count*n_prefetch, iterable=False) - reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False) - reader.decorate_batch_generator(iterator_fn) - reader.start() - - return ret - - -def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0): - - def iterator(): - v = verbose - while True: - results = _zero_batch(shape_and_dtypes) - - outputs = next(iterator) # dict type - prefix = iterator_prefixe - for outname, val in outputs.items(): - task_outname = prefix + '/' + outname - - if outname in outname_to_pos: - idx = outname_to_pos[outname] - val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) - results[idx] = val - - if task_outname in outname_to_pos: - idx = outname_to_pos[task_outname] - val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx]) - results[idx] = val - - yield results - - return iterator - - -def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0): - """ - joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查 - """ - - task_ids = range(len(iterators)) - weights = [mr / float(sum(mrs)) for mr in mrs] - if not keep_one_task: - dev_count = 1 - - # build fake batch - # 注意这种方法会导致一个问题,用户将某任务的mix ratio设置成0后,并不能避免从该任务上读数据,若用户将数据集删掉则会导致崩溃;不过相比之前的zero batch方法,这种方法不必作出只能有一个size=-1的维度且第0维的-1必须是batch size的假设 - results = _zero_batch(joint_shape_and_dtypes) - outbuf = {} - for id in task_ids: - outputs = next(iterators[id]) # dict type - outbuf[id] = outputs - prefix = iterator_prefixes[id] - for outname, val in outputs.items(): - task_outname = prefix + '/' + outname - - if outname in outname_to_pos: - idx = outname_to_pos[outname] - val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ') - results[idx] = val - - if task_outname in outname_to_pos: - idx = outname_to_pos[task_outname] - val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ') - results[idx] = val - - fake_batch = results - dev_count_bak = dev_count - - def iterator(): - v = verbose - while True: - id = np.random.choice(task_ids, p=weights) - results = fake_batch - if v > 0: - print('----- debug joint iterator -----') - print('sampled task id: '+str(id)) - task_id_tensor = np.array([[id]]).astype("int64") - results[0] = task_id_tensor - - for i in range(dev_count): - results[0] = task_id_tensor - if id in outbuf: - outputs = outbuf[id] - del outbuf[id] - else: - outputs = next(iterators[id]) # dict type - - prefix = iterator_prefixes[id] - for outname, val in outputs.items(): - if v > 0: - print('reader generate: '+outname) - task_outname = prefix + '/' + outname - - if outname in outname_to_pos: - idx = outname_to_pos[outname] - if v > 0: - print(outname + ' is insert in idx ' + str(idx)) - val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ') - results[idx] = val - - if task_outname in outname_to_pos: - idx = outname_to_pos[task_outname] - if v > 0: - print(task_outname + ' is insert in idx ' + str(idx)) - val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ') - results[idx] = val - - if v > 0: - print('yielded batch len and shapes:') - print(len(results)) - for i in results: - print(np.shape(i)) - print('') - v -= 1 - yield results - - return iterator - - -def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True): - """ - Args: - task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks - """ - if isinstance(task_attrs, dict): - task_attrs = [task_attrs] - - if insert_taskid: - ret = [([1,1], 'int64')] - names = ['__task_id'] - start = 1 - else: - ret = [] - names = [] - start = 0 - - names += sorted(backbone_attr.keys()) - ret.extend([backbone_attr[k] for k in names[start:]]) - name_to_position = {} - # pos=0 is for task_id, thus we start from 1 - for pos, k in enumerate(names): - name_to_position[k] = pos - for task_attr in task_attrs: - task_names = sorted(task_attr.keys()) - names.extend(task_names) - ret.extend([task_attr[k] for k in task_names]) - for pos, k in enumerate(task_names, start=len(name_to_position)): - name_to_position[k] = pos - return names, ret, name_to_position - - diff --git a/build/lib/paddlepalm/utils/saver.py b/build/lib/paddlepalm/utils/saver.py deleted file mode 100644 index 9277f0d..0000000 --- a/build/lib/paddlepalm/utils/saver.py +++ /dev/null @@ -1,80 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -from __future__ import print_function - -import os -import six -import ast -import copy -import tarfile -import shutil - -import numpy as np -import paddle.fluid as fluid - -def init_checkpoint(exe, init_checkpoint_path, main_program, skip_list = []): - assert os.path.exists( - init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path - - def existed_persitables(var): - if not fluid.io.is_persistable(var): - return False - if var.name in skip_list: - return False - return os.path.exists(os.path.join(init_checkpoint_path, var.name)) - - fluid.io.load_vars( - exe, - init_checkpoint_path, - main_program=main_program, - predicate=existed_persitables) - print("Load model from {}".format(init_checkpoint_path)) - - -def init_pretraining_params(exe, - pretraining_params_path, - main_program): - assert os.path.exists(pretraining_params_path - ), "[%s] cann't be found." % pretraining_params_path - - - assert os.path.exists(os.path.join(pretraining_params_path, '__palmmodel__')), "__palmmodel__ not found." - print("Loading pretraining parameters from {}...".format( - pretraining_params_path)) - - with tarfile.open(os.path.join(pretraining_params_path, '__palmmodel__'), 'r:') as f: - f.extractall(os.path.join(pretraining_params_path, '.temp')) - - log_path = os.path.join(pretraining_params_path, '__palmmodel__') - pretraining_params_path = os.path.join(pretraining_params_path, '.temp') - - def existed_params(var): - if not isinstance(var, fluid.framework.Parameter): - return False - if not os.path.exists(os.path.join(pretraining_params_path, var.name)): - print('Warning: {} not found in {}.'.format(var.name, log_path)) - return os.path.exists(os.path.join(pretraining_params_path, var.name)) - - fluid.io.load_vars( - exe, - pretraining_params_path, - main_program=main_program, - predicate=existed_params) - - shutil.rmtree(pretraining_params_path) - print('') - - diff --git a/build/lib/paddlepalm/utils/textprocess_helper.py b/build/lib/paddlepalm/utils/textprocess_helper.py deleted file mode 100644 index 35607ec..0000000 --- a/build/lib/paddlepalm/utils/textprocess_helper.py +++ /dev/null @@ -1,19 +0,0 @@ -# -*- coding: UTF-8 -*- -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -def is_whitespace(c): - if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: - return True - return False diff --git a/dist/paddle_palm-1.2-py2.7.egg b/dist/paddle_palm-1.2-py2.7.egg deleted file mode 100644 index c634ca9ab7285f0615617436dfc085c18fc32610..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 166800 zcmagF1CS@t(=FJxZQHhO+qP|E+O}=m__gisY1?*BcTd0hb~oPpfA8(aRzyWrR8(e0 z-E-^Y$(vP5vY=pSKtMoHKyGn*im^5kUQQ4|Kzm3)K*;~Dic3n;ODjkyGAhab-zPho zx{A1xXaR2xTGWUURPCtA9LeOR#m`0R(lM#+jOuN4uO=E^j63>~3zVo#?ZAfFut*FC zC{PS_@YK*)aIb;V9v170AF%u_EgUh-(pA;f)r8j%Gu&sqZ``gK>s?G0uKjo3>ZoSa z6WjND_kOcceu>JRPFz!;XbdzydgJ=}zRb$UD~m+SfbBSO_n`{cO{V2(*J?5;!5`ary}C~i$}vZzd2iCbtSjPAy3J4 zH-jbry?7d-(kH}cpiEZ0bV)K!{lo{Rxigqh4vbhCaQV8TL)jxI^alCEv(I=3{yxu~ zREKnxO`jwy2da=^sN{0j#mXb?ttNY{xRmUV(uLFGDRd{nP?eZUmt!kc9|yIH`4ko8 zl3c9On(=e4NLTKf_N!CxK)z5<7YXmJKI_z&(_ye`^2-M{nz@4|T(*?K<$(god*<#b zXcS&5v7tzfDl3h#tC$oo4r{g7x=?(zJg3EKKFm|%%=Zh1xzwOJ9&X_%`I205TvUqy z6nwkl5#TAyUmESUS68T~(ov5^E4ghNjqPIrjW+X_lUankI904HEQgL`{0kQ%c>5v% z&}Oji)ecx9M9j5?r;9)o;R7`WIla<^JZ-p>WeO3!7T$7q=F@bhOE67JWk$&>vxi{FN?jQ#EoO^pk-VUCRgI z%fiHml=&|Prcy_yfRN3bHcbzIS>oL-?_jY&wbS9+;zy4cH!oaTjZ}ai+n^}u2`HJW z*o_HxYRB?T-fKYLi6zn7eGUgah)I|#BvnUfI?T$I#R;>4f$&Fd*E^0SXWfo-A@KL` zJ>-c&VV-Dja%6xpL;AhV(&WcxaT|v#@z_|>junOg(s&@ZADd6@@P+8k&!|#69_pK? zm-q|i+-H&#ZX_*|9A6KtCZGxkXDa6KX&^dcT77*#AOBdL7a`t>yPTGJ2YR-!(54$F zr5l6;f9E?hRR66-eOh$wsEjmq)6vkYZh2T+C49NnBP6&e4-&ebMtJx``iL)j){jRAaURDP-c={JV?;s#2PVV{o#nZahc zmQz&cXtM60L9d`f(F{QsLV1Awb!nW-7?*(%Wy8Wz>=uj5-I-ysE=5P&ndiM5h}P~{ z#??Gf**izSnB10+S=kR)&4>Z8T-lf^Y|j1511i$-8eA!-Z?5w1+HuTUo#q0SMjp(I z@#&m)M!X8J?e2o`wsA7gt(Jyq4aICl18L@@6LfC2(jrOL;`<-ogipZdhp{XvT12peJ4?s^Tw4HadC61FzAhfF>DMFhPI#IXh`? zO!@4wS*|ISnn40S-4W9(Ce2nWr|MGOgr^L&-}4woQ+C5alWyac47!dMIm?REOyWZO zo1pquFs-GS>PR6nf3B8bf~`|i)3zm4!K*c5T&3L*jFDzVoC_!6%DgcHp>B&lcG6>z zw#>!06`FS`Ks>veOS5j@CyjAs&&4(xoZr0DrHns5dwHg8cp9ucn9VwfzAKF&%liMu zWXXq&u>nhSZ;jhe0Rn(Iy4iFTlB->TyK!7}wQMa@q?~>`pmr=DOn8R6#ly{1Z<%>@ z6*e7oeM_K^6d?&LEGS|cK9rC)_V2-Pf_(Zad5rmJg6SdQ@j2tAhbdz?y2{lMDAO^I*!1NQ)g9*^>Q?}^OP-WMI3#*UCl zZXfYcogd@xdlffuD+O95KbCtB)RY-M=?fxYH;h7B>D-8x@%1!pz69%ztYJZvEFd#vR0_z}{k z)Vxv|;8e^CiSBX-80xski2og)6o_>e(0{P}LkI}}KjASmcQSV{Gj}lcHng*Luyy?} zoQ^<%{=co!|I^yR(T(26+KJxP*uwn(u=@QRasdDDZrFc2#(!G5IXW5InR}Sq{Z}wr zDLLs$X?m%d$&>#K3m&JTh`T+HApOr!@BeY&WNc<;XYOQdXU}M8XzgI_W@yOZ77^nF%zlARmTq=Vj)7Ks zT4q&A%2s3R;tc%1J+tQ-#KPjgz{LNC4D;Xd|2?>=x{`49zd4=PsxH>QzlQ5(O8b@2 ziG;k}vyewrl)axIw`Ejb=+KuS`M^RTL`f4ZdioIIoq$Qv+nzl>?cEij3BGOWux_gK z1x7S@I0-5Q>e9%_hf~ zV7-^@*%(qXuR%W~SRGsKLIztBI=gt&^DVUh z`lrmNMOqNKDz%)6%-jTV#b}R-Q9az}SaIKPEx{^=_kSV(Ul61?^_jbY00E_g0Ra*G z_far2w=j0Mb2D@`cXP9Luyp+gg?);=V~!9~#NAhPk}FZ&SJLT9_mr_|3L1GZnp4Sh z$QsjFjZyk71F^&E&#tyzg+vsh)=Y2j)6C2*bgV!;QA$^3G&Nmv&7vi)vjUJ2#Z?{3 z=;omHEAZUBfPb)W{u%jg{vb|Ex=ccF8o8K8C9z1{CH7O3s|Y~{2|&gaK|ZYnq@_H; zCVz2HfHjP;vNaJsH(`E%1qR}CWgnpFvM~k0;Rl<>wqQjDTVzaL$;CGX%}c~dU;{C)P9rc*=Sl7E!~BBIaw$8 z6taPf?DRHSOrvb8^j?D;t)uS{ygrihK(3tL3tkn32}5mJdSai(#CA(;)x|=uDaFvW zAQ5G5>I2|eP@W$L!NF`W8Z@~-0@iEZNQgXs*r(hZ76(D3i`GhfH-Iw+YhlX#j3R`1 z_5i2z3d0r5L&8*UqM)@ zrqvIa$z-iytbyMb;}DI<*Xtc zfrhnkbdR{IP*dC7IO$P1ZtBA9Q>H#v+j76v9y$H{vh&HouE~cvI_5t7IWq7R*ndQ3 zD@y;}ZUL$6bGEp0hIvbT#xwHZe;~QbXTIp}_b}d6F?G|T5WL2{ZEn!RkMNh#9gjZA z6QF?3sWCu9&e_00pL$IO+rSyM&!2o( z0(s=XdH4Eo} z_G=Ax=7jg5ltSO4pOETOL}Kk?q&V`DI)BAP(sg^X+SsbDajUMuy>JP_GY-HT^DK19 zOil=PT<6*x9j?FdyAcBeezX7w&d;CP1D6>Ha72qu;L@;KxXBz$kSLHF$Yhd(Jc({X zZb6>G?#4ESn!<*nh#Nwpgqg6*Wc8vr8=Kgv>5#8IN|r~4V&I_@L2Qxe6f(uu`33%xyLa}UoAtREEBqoM~?~B*ECl8Pf}T2PrK2bOSf_rg9Dh zKEYr1Hq{P&8&80%EONP@r!8|X*p$$dXKYc6p~vZMNmq9?nQN-NmM|_X{8Z+WM+5j#V&qwM?L<@(qi4C*SuwiG4N0%Rup8%QiI|@E|O2t5j z;rEDiY?M*tm;F_*w`GO9qjn?nF~Phn_`UN5d;a?NZnT*O#{be! zIK}_L;nogr<}Mb-rsn@>>qgsN6;+xbaK7Sv7<1TuaI~kp`)C*MtlNFX;UMkYL0eb1 zN_q*pg@V<&9MnZq7ad({L8zD{A-XVR8wMD5BoXL?DJMUx_mOscpocPLGBk6!udZ*& z8+g*~?dRj*?JieDf8a_afSri8$iVGmDMLTd#Bo!BIBc$JQCS`V9(m>9PRvs9?t}GD zBpOs$(|gPx6EmsRXNMI`gpwG$l6VFad|Lq5!j1=wl^^|QQ}Gc{G&OK7F$-8^aWdiG z-?RkJ@M~_`>I=Vb=anJ1791GcJpY1I#a1(;B}pU|qo6G_Cnmb1r3Ul%-;OJXn1Poj zhyj{Q-!f!O% z7P1;QDhockf3`n@ho1C_m;_z4p-uHAar!Y**p*f}qf4nKjxzj+%(ZZYt0PJiBaGuJ z<#v(fDU2KtmsW|eli1+YK$;cUeq)ldk5x-S^7L>9b&-L$y}=j%9rAeY=pXtkjJWXL z{KcM;;<2oQD}oC zJB1(=H7l#jdXaFfEf`d_2oZnuw~NwisDTU>MK}{o6+lZ>2p?@!M{F&N)g6fuNNw0f zi~{Ar5hwN1!Pe1{@b=<1IMCkyZ{tWD)lfac>Ko{5%G@r;DS}oydPrL#*kAAla59o$ zL3E>f_oo&+O(4jmby`}M2OnNHJOrP?Ss5jS-)bA6c#ROqCDYLgTAgmc=n0q@8d1X( ziUuUu(cOqkUOgprG>VyveaS`G6n4sKKp?`HmaJCAg2RQ zY}}T04t{U^sI}?9Qsn*F;r!W#jDl3dhS|I27v7k4Dh{w5*|OZ(1<1Jgm-_rW3|D$1 zWaZQjzRrQcqcu1VgitMP?0Jp!cC`3=z~sU~JUWd7sRbMssAB;6>|CJcGLhh21M}*# zjyhe*lSpUV?})|$BV)(@3>J!`*lC&JZ61htm%?}s-@mI0_wGx(F+BaByP*o9X^Ngc z+1H{s#*>kNIf?s`i#fs^*q&r256L@gujSmcF!qbak3GaaIO@_=Y=&O%qR65IJgUV#Ke_)NMHpWgm)+N-qEoVasUAPiPWyOT!zAPkFd}6l_8Qfm5Cutvja3 z0A2AscFJg_FJgEiz5)+EiGP%v=rbrCvysjnFamH+7Gj78^7 z`}-a#^JkTU(6Q{!Sz(+w-RW+Y8N`Q!cjD;Jn`I7R9fq4Stv>mVKE6&hJczWA@^TX= z9c?FfqE;SL`rA;_i7qZlD{;n!m%>PNQ(lA-i-v)yRHM?V?0!X!7h1?NxQdap7R)%) zv|T_%19#lWwq8XR*%s9~i{>~YEwx5nz}hR0Jf5(6<12x#uj0jA7?h+fJ9yuq)*RMk zY~jhFJ~{Qs(d1wcCMs@bD(sWSD|T3rZZu`_qOsG(y%}XX}D46BM4EFhkofy1D@t})Yo6Q2@ zd?e(-st%4tbm^qriei-t1Bwh~qXBWNhBZdRBm<27TC*((sYf|%O*dxa1coHvSExXT_C@9?p)=E{MQggBrcX2-LErO;BN(Gix_t z&B~>~0#iJUMYHFZmggFn;+yXuD&v{DAosZ8>b3#cvN133mZYP}fJPKS=5k2&EZn-y zituNj#>spJhcW}KACqXfCx#goCPnHZ2epnaZUgfKFfzAcO3CDkjK`{R~atf21|g`4!ZlyrADDwM5nA@YKIW z8_Ny}Gtp+U#%uSx=7PBKEPt6X!FUcWoGQ8+d8X?ZV>=S+MD^Ja*WguL^a!CUA<54+ zJ9!eP;hdpc0!i93hfg5uzeP@4+f=B-cB)~1-C+XFuD3F zxk)WK*Zt0$UxlmVJ5+O|_dp@XyTmA-#{l0CCV?ZSy}YnIp)}R-n5Nri;m|k;^M!9} z9)}HAZMJ!LzVOiocIwm~g?mOa*40Q)Z+3H;$^_PO3k{-12a-{SX9c#U>Uy!c@F`-} z*>h=Ag4S>dkA@@?9jz29i2Gf#{(x8NhadmVM)Czw*p&btdenI&xkj6Q*#2pkgOPjC zg-{s?=k+;`NcTi9zlILkX?dl1@nBdk8F~cu zEUMpw2_UiE-o9br-qA#+V@=_Ww?MC_*vmqsi_FqfBKwbTY* z?#u^0O$N)8VKw9Qch>k!kZHwh~367e}vF>R6T8sV+`V(g;DviR0&-MEkj!F_UfAr-uG; z{)Gw&1&uU;0z(`=0u9m}pI0#6|5C@OzPIK%7I0X^=zq=q=HoCHg{!xwraL6npWWqp z$9@jEkLJ^$4&a7aze>=wfp7%ywQX-81Yg|BuFV-F5 ztQP-UK^?i3Nl?6C>Ct!BGpGR2UVOsRXjOxcPn-g|gv)PVHt)smZo9bhYe{V$)<<jUE)-F*L4P90zOEF9f`3lQ3V1!hagghWB zoFCB{FJ8NsiUPVlz;-TIIj%#D^U8`HKho$~61ZSbe z<`h9h@)b{SpTYPv{`&-&DJ`aEW}=_5PQ*gUU2cj3{e#CrC$QXKBiBo$&OxKPR-CcvnAd}9`8{ch=jo30~mtywepihZL z)q}3!5EfQw&e;Qv`_6G({R?3-J_l7KYTbAW!REn>kwMVpN4X$XYe$?8EEEOWv@>NE zgV7ye58TK@4qhU^EuQhBCbDg=1#fLX-WQTIeqBGg{1TgM|AP=Tj>qe>Z*&#!-T$pa zwr1Wx$QSAsCVeb!;Sz7GW!V)q(-8Po@~A2*6BHKR60L`T_oWBNH`$#0!BJjb`C-h3 zK|)2U?EN^D@mGg((Qnr7i9#;cBdZZjR6|Zxkcwq)H=1>Bpzwg%Ad`UZIew{0*cR>) zP%xO5TWHdx%M&q{aq%c|Fw6(09B@HU0OFiV=p)29x2!fCouC_4G<@P^Y=uSw6%{KG z;cM%{oq>e7=-uGnC15PO8@xF@LQlXPAkEdizU} zvcS#S=OGQ_!5M#&LfAIbET`@Z-YTjZ2ciQQJ|CU6`bP$@gfOG*f zecT(8&JjSXW(a6haQ2O-GA5aZW0`Q_s`d!KZwltGUM!^hyviG5=EniOUbq>D3?$`{ zCm#;rkNW2N+>!#WTJyc^i@Rg{X>1C9@IZNtDPi`jbtbrq37QH2*C57^3OQZ3WiVXXtq}I8X=_ zXtT0p)Ou=R0({Rw_A9D#y3_zZ(txwCK{06$Ft60$T(%(##hs=d(09qOV-UWC?Si<@SF8?pU zRiV^)VWJCnVX5b*vtq$j8Lny~pra^nUFZ=PXdfieNsR22!{MaBWQjhzp>ml{rx7pL z7hUQ18KXU@cPP17a0ME&uRQwr?o9lK>$+0|==A_xBYt#^N07P!bsBWto}{}v#eq;% z56&^_{f0)tQ}SxuJUuNO9SVuCib%bxs`{^;DJU!B4^u*<=nII z8O6e~-?86LBlf8)wRzda%ed#r)1j}!c=!oDCMlo5Yp@;ly8L}i_oU+MsY1W*d+qdl z@26D}Uhwm0Kk(75-1Uu2n^#N56589TIzJU_||UN^FHI3^(CP(%sy>^Bx`fkFj%yhgLTrewh063j7nM0}Yj z1Hd}*$s&y9>va+uK<2l{*w$zs7=hb?5IcX+^=Ea8uqgu6RA{fQ16n@dQ^e7)vs~mB(bcb@?&z=r zZWyrsXwM4SM4N-IL9|^rZFARGVz2Ocv_Qr{dRRnv*Skw{^17l6e`9)L2d%pX3C_9ggd{j}i(9_LKLYi!S6lD&K^1TbGrgaJWS+>7Rd)V5+ zSI@O@F}+V!;Dm%}(XOb)0Y5FOG`0iwld$E4Q+8+b6Yu=Uk6yfw1c7%ne}K7fBvz_( zzaq#V&X5S?ZngDOWomxFA=Bj4P5mAwMr!`yRd;a?>*(-seNd6=M2OR+*6?$Yr3ZqB z$vDFLd!-4K*2Gv}n4OG8WiwNk`*q4D#52POnh+eO6fA|*O^x~8?ext6B!5e7*QFO) zc|U7AdZ%$s9_xY<8H2h-P=+GjtO%tGSM3gR!t&@}q<gcAH}VVt|e>>`qCk^ z^2#$tnf5#ox{{E8rv@Hay!yV~lu%KE%Mc-S@$$0r{$E>9HVGsm9$8!`w!5aq#BWwb zf-g$CtW1(Hycpjc>DK1#B$pDAcmjdP`D3*WyLRfIjG5P#RW4~zmMw=Aa4@+^5P9on zg`A-gw0$ogn*|4%oYFn}r7*Lag-T40{lMaKnE>e&w&5Fcqm$c&c6LXkjw zp@#IR@nP7eSb{a$YdPF*=i6Pb!V{VBhh`^AIiTf{`2x;%4u7Awg^e=Vxwq_>*~p>& ziwMaVR!`(nUV{oGI^p!%0j^{UQk}_4mD482Z+a-^M7K23M;aasa#Tjv64vQr)88{F z>Bk6v>_CD#hZ(YR`Q;UI^T`xv{`u~P;mYTCK0TwH&nKRrW1yRvE8u4K%+A##8dsPj z6m&ivne={tA=N1iN;xI zxRnvqD>5TDsF23&7WHAf5Ti!0fVpM|mgT(^)6Q&4)~g7Kf+oVE#Ew$^px;q5{P@{i zY^FPZ-qK!?J%n(AJ*Lo+-X`X+j{+%Oy_J-2Au%Fv?#6crX_ofOF|ME=5G)we|LDVS zs3i(`V2$BX3%GmbE#x+q>F$G0kz=&;3<nT?FR^VePWz(1d25|p5l?733U2QMz3-ZR-)yl$MUuLJ1Tk*C8nhI< z*27jKxnm#*+Agk~x=1#2Sh{;z-F((W=pi3TL7Uo97pa|IO2*hqVIR&^|B`CKMXnZef=X+sLZqC6WqEOQi&!q9BJ?;Cpzj+C~ZRkf99V?zkVBTy|{(prQ(; zu4on-P8-Yg7)Pe-re#6r{$W!4E`^1`ejc`CmogSGb0ZD?GYXJJm6&ebvk}KVYUTA3 zV-H(Yw8np_->we9Irz0QN9J$DfAiKT`XW)G?I@`~m4&eZK(n(cZ(N3F0;k@uPnNcT zo;Nf)Z9)g&!BT)`*5n~sw~Q&%M&_EDXQCo`%U`Hrd)JW8;V^B0`07eRjhT+xpwYdR zc(l~QhJ$J0-)VP+w0?MsY+0EWC9@A2Ws$wu+*OzXWPG8 z!3S)bVwWuuQ7eT7&kY$3cgG)LqZpJ$rv7Lg=~Sm<5pf~*T8!a`h$|R!=$X8HK}ty# zDq1z*gOCQ*%gB_fW!)S7qOogBU}JWepF%gEXf|uv1qlW%C~i?I)=pMONHEu)qwV}j zzmlSfa9_(*WU+*&fZ4YiV z!E4=RLR~LxpNCjcCw~<*hqTm99yQuVUTKgaTH{0hF*1kUY<7)wdnTillZ`Zl69N>F z%dvzR-nA}iPN4_)L^+RSp=x$#^rsMhK}5UeUCA`i+mrie5OK|H=?(C9i&!7<{SB}UozC#M-PVoE zmWPQ({?7ipH!3@AyryL?2=U`hU&h#K?RhrmxfR&g;(jNYkE4+zJ^u-40)9YrdO3g*9cn^&4e8T9<87v>WGeg1mGx0*MhnVr~?<$=`i1c-zAd@o)0jPW}Bt&3rBU+_{^ng%MPArS?$l^~&d`6pV( zuB)I5ZZwHT^`_)2P|_$#R;BG7M^tbr2oHNb1g|P~(8W!UPLdnrSyEeaP^i(wg2;{W zJ!A^T<^Iw)XiK-r&i#TLbuUT8Pm&VuNHX&!#l8`;T|i%-Z1aZW4GzSynkGy_8< zU<4>8tj7|!Pv3(VB`UTqO?hC7P$tI+aC&zp9JE8v#78zB zF$$&QyvbRE2KdwQL;FxUadRngOXmzrBol!XnA~CY0BdoAIMKnrs^FzKijwn&ebSId zm*aFYqw^Y_Bn1Wbiz6A7XcD7jAORG5I!v=GDAm>J*h&E;!l z@){KAdtJ6R6Sfn*3OPTb5unZp*q7{6NF`wJ6sk{~onHIP7ayOhrVfjlZmZdqLAV8h z{%wnq2Z>lsW#TEdzb_Ei&RLVmQ@U~Zgy!{UQg?`E0ym)us?=g$Hq#;tHh$lWZqfk- zV+gF$;Kz7PQp1$hFzRkK6PtO@2g*N%&kd;S{PtwI@zu{@;VXuLKz$AoGyB7+=vEzE=x^cicSCO{+c1Cv z4~_$gZi&A@d+~Dm=S4wJ@&uis?5R;;3#UQDgt$Mt;6y|sx3PlPqCB2%Dumql7N)4A z92}Q@)|wg*#@9fnn$q3Vd2)%T%3fytk!DN>!ni@QXSUhfs?-DlBPDjoroV*dzHr2< zfGcg4vtda1N(J)DgdvbzUvF4pLb>s?FxZP}okg(vJGsR9AlkN#tr12mRK?pgz)B7& zv{}msCbTIes!tBJeb{y_tZHe9z#ET{MRTRuHUc~4Xrgo22kfu=is^BU&lin1BFa?= zRUPcKK54nz({yvjvC`szbpj8?b98-#at%Vp2fu?U1 z?o1aV^uN9AStNirgWZ6e+x<)4AVU6JYZtHtVut`2abChehWm<|?^^7Ft5c*}k&Ht# zR7;B4+!WCg0jL~#3kA@2mb16f@31N|SV^o!ybtb0&ir4SZi zAS&7K-andY(Nu)<^XE$?>5;Vp4&GrSR)c5iFIyg0?MKo$XR;{Kh-bI zlXZ=z8#+l2V_zO~Ia2PrbPv@_$%y@^N9n33;1FN97;jsxy-b|Gehx(eUn3w|H!4aY zf$%)-8ZiW`P_=4w5XIDk-J`a$b0fx~$0ynd1pszOrtAyV7TA_?MZTBV(e`pP*SfHV z4-K{;`|UL;qzvz|hD-LJWJo5ciH39zvermQyvJ66i=dhD4isd(lSq0-o)^J%+ETzT z%skT^IJ{l^+Dbz7ie)MnVpY=~`oa|pUHrG}u9JKwDCpJ6x5WiqAly18#TkOnQB=ya zGrDl(33thYL^vDygG^!h{HUCj*y0Ui64#u(y)ag!TLHj;N0aaqw5BjtPYdJP5& z%3kjNn@#4UPzhYnQ>%iY93mn$*{`Y!1-zX#2#(_u=@F!G`SGr#^s zWJRq#qGQ`w2ashAax)I1ZgXWIS7$S%Gacw{!Yws2bK#HM{0j1DG!O&-0GUO+joq|Mi*DsY!H<^SkTUT=4+Xt4{iy#{ z-BQ@v^4nKRt$p87*6dKHf+Li|q z{T`XEEp|jicbYys8k>HQPc*i^MHut2#*}0rJv@cZlnv1fIiu?p%zI?CMRg67?2W}B zJD#$X71Z9Hqe_#W8Iq)DNa3&sx`#_&g-S-^vCv5H9=>jR_@=!6{qBGe9oC zbwI`4ZYbdWQF@wGc0G7!OQi&J%7Ve7wc5>E^zHjod@D`!M!7?_Ob-@<>2(C-bSB2^ zt7@t-mRt3K)f^Xb4X?-aQ9#^?binsybN})V67kk?;FE-ru;1VFYS%JUR`Xpk)_>*yjClv<|YsZl_0}^Z9nI!L$={MYM#tn z^WMd)f+f50s3#`l)HCiXU+KHDwrswfFt$l8S!Jea zrFzL~Fb-FTi?8H1RWnaW|4+b@@E4O{qjbh6ZP>R*t8&m|3$4KRm(?b0M#^RWgjYPj z4Q$3URqt)3mQU1rxfJWn@b`5Nmxnn)1*PRkJ@DJiFS-HE*N>L#e=V|u>HMyc6S^Ml zZR!(l9uvWZG8L4oBIKxr#(L4cXpZge;JM8DzEyZ>Ass)*0W!6&!+4l8fK9HU5f6fo zd$pAmwdWp&Dzf^1A6M2ud%D?%(#mXer0IR`@bX z`%G?3fNI2B#%yjX)@F>}7@umwdwkuOYy+aAF{uO;g3=6Exp-(VK8~?N_EetEK+^OAhVg_Z| zK7xXVi?h+eS~0ismQI`4gKxvBx>p{SA?@nbpM0MkrjbK6YIAR2^Bjqwsvjf5dn0L} z*bP-_D|%ryr<+*E7#ub^1+zTG-DE;JPwCNe#LN`d_W zbXb*7#2o7CU2FHKPnUG|scF%Aqxy%1E(zRs*+g&W&yHosc%P=#Ja2t^{vG@*^|$d* z5?8$jV%U=O=fM1!l(xXTJl3_F9AaD9QwBGBq=!_#quhnf!?CYnQ^4IUjj(Jcr`nr^ z4!c)Y6~bK4kHty5p)*`;jA-nx9nG(+l&-N7;L}{OyBSS>+>G$N?lZ zX2ba|JygwmHma3@PgHP01I>m@2OHSa<-xinH1gAAZ-~yqSyd+@O}X5D5uO3}FAs)= z-CK9YGx)98FNT@CdP6G0zD1ARAn#HA`ijN9&LnB?c{ROeLHG5&W@JbF^yGZo?`}@b z&^>6js5K?kq>tPqYz?s1BT@50U8`zf)_MP^X$&(y+UXb|*!_UfprSs><0Z7;^R~VJ zywmDmc)1buYxcbu=zIgJAH5w#jMQ|z4fy)IpWrA`ambL60;}RJGG8# z1)hjEKUb2&OQ@g1Sz_?&GVYouhKb*ksXHhE_MB;B+J*r$C1?D`u`mQP;Qm(2s!qc0 zKQ@@(!TkQaVdtfC@%?ojMP%-=n}0TMBWrxz?rhj&>uh~+h9xTJ&W0=BX>N{%$Cr2# zdl?UhDHta5R7Nj>lVywH;d^1fPd8MspSSZbvK6=IgjUQ@T!-hLSL^qFAmp1Mc-gEK z=C=E@%SWl#31H|%F+HOQ!V7!bkN!+pwt09h$DcKqaI{kUPJ=OIoqSl&?qRLkeih8) zbp*|qu%SSCDSmkc!(~P6H+spG=rRO@zg-XZzVV1nZW_FrLwSKnP^&g%mjMi1T;~>4 z%VRNbX3VKeoV=`TfFvwxDra%4$3}UnH`vQHr_og7w*O8fXb3SN@LJ2V{g2Qt^zAtW z-M1g<2xO?rZ;_FT+3Ihv=sc%T%AlYJ8ssTqK8-lKsI&;DsHA(44Zg=plj#Z>-W zmGMYbp-im`5Cnx(o7ff(!0PNonn&b6KUr?lEVuBeK%8~k*BX5`h zj~=DJ0r|AA^xI2aOc(d|809&}Jh+Nw>C`k>HY{4Rp^QldNq{+B1H6e;)~9z2o=!+nh@dEC*3Pe&{W(b8y}!mz zXPf(vbwhDIx`+bU{Q;g{Hz)%`|0?65ee_r~xZ5v}vnk6^$G@?%@(8F1MKo=ZbJ8#( zh5X5I4+QtDlz(?7%h`GAsJTf=X=6u3#S`}!C3;^hPv^eAj-3OSS#VCP%hOwM)NQY; zNlnufFo25@eBSrzv<&@n0Vx&W$!e`H-{zapvg#)NV@3fZ1a)9a=OGa}uTW}}rPWQ0 zfE3rvK{BZQ9js09{%m1^SzO@b%c^6-8T)4=^jnkuLssV79g9VrTBT(y>-zM^07f;L z^^v%;M*8BZAT@V7W5x_v4J2FUAoqQFz7b#pX)yn^gTACAtU|@<_~;F7yB_&1Ib|=l z=(w7jb=Ki)<~6*7kjD0%m6=b~J$s~^)~>&sSXl+Te(JC$GAxJn?6;T4Z2!LZsu;PT z-YFDbx=Vk9+U=oTICk9u*Frl~@J*SB)y{mU^N?nB>kHZMx-}d1N)&Zh=bI$XE2Kf> zTG4I{E~Cg!$U5JaO@FhNjDd%5P1c{bu(4GZm`g~BG*zkAvP;Ojebkb?GR1%N6&ctK zn)qwNwz?gD?*}!C`(bIeA)D8Q>&52UF%qQLJzx5!@JfSNtHz23g>97oRvJ;MHv(Yd^>EyMuWwou## zrv|6{QCYy7ATXiR+Yx4@VV@26L+0bTwvWXlig&FnY`Xo{5lVn zePXekH@>&aS_nwS$cw}yL$m=Q{txk;nimOIxucPJ+cAdA-X8%M!b9D?xD-yTW;gdA zYIz4>aqs z%i9EVtD!5lkd!W|RXO8szd;dI1LjO+S^r+Lqp)4oGCixs;~71LI8?ImMh#Q5a_y?s zh0;-v?*kt^cISj-JiD-Kg1XsoJxa3$B?|*t>>JDi7?12C1=0~KMeYll2f}Oo6CB~MqHm{FJZ%S@2J@KJwQ^o`rm z0>R!BjJ?woyS5$MGJlL`j01KE%Xn-&fZc;P=VJYPM&Cus+^jCXuKmRGx@c?tFQ z{-2lor?%JhNO}~Jj{YoO&ujmPqUTPJ;Gd#?d-3$RHIa!9l|Q%5s;Ua`Q()C4mm@*< z8`ct7EwlBWnoFu)>^W4pBK)U7a@TKNz&>ny!L1%@fBg@(&M`=nAl%YDZQHhOPusR_ z+qP{_^K09-ZEM=LyLawx?B2U~x1utlDxxwX|765lZ=Um<60gkkcD5?#48Wu1Ux{-m zE=djCvxKYxYm85g_Oyv7fh$S_iloR`@ z1ayty-sqw%Tvl2e{Kg1%-eJ(8t_m#JgvQ_a!Mhbzusyi{&J|MHpZNX%D4BNu3dr0m zqXRux+%Wka-$L(ja;Z>}S4e-)9b;IIEFHC6c*jPKt3SILvWhzIURdr87$l6##BlQL`z(}xJoEXnBJ6#8cTCkT zZxB!C7of^4i0WUI1dW$p-yok%i~Qj23QdpslP5a(B7=j(E5YjVb@XuzE8;pRahK+$ zE$3-BYBjeinbkds-^e;L6j&gqGTGpyqxcz!%S=$i8Vqq(Px7kfYLW>dyn@%GOs-#~ z25pf{o8PYAgn2<@6>$-*T4)rFQ~AWFN09&!^`AHlJu4!-elo6N*EXn?25+}PSUOpL z+~ITJ4>r5iUS);7-mkqcR)07Wcw=ew9OdM*{E01HJVHXZg`ZnFoIE}S>p!i>>OmjR=>UU4o#^aSGI7q#p*g@=!M zDi=R;&1DY9omBF@XR57*a$AD@UUo*r?YvK^mTMDb9fx_eL$}FS32qD7jtt0JT~#C8 z&^&b}Z*~}sOV}fOKh1#^w zhyMQl!5%`l^g$TGe9VOrP8r&2K+67YB$ReNIr%rie@X)WLp^E^;qjtG1_bn~@xPqR z|HYU4|40Iimwl`gbVgnEc6k~b|J?|e-T`24=(At~v=WG*0*F2Vpdtgv_+5m}3t>wR zZa3S*u*c2LHvuq~YHmoVqGE2C={icZn+;V%QhuCnIV$5yq-FPY#wT|qsZOcM1XROl ziA}l1RZ{nZ&jd$4`tG}#ngK~lAv$+PFNK{qXV;5m^7;Jn*V(VT!kO|v@2mQHs>c*m z{_^Ac9y6*F>H6ZTDOz!haawLR8>*8vvJ^{BL6+*ONfjGqX&))UK0>NW6&tl_AFg@^ z5KH#~)#+-Jmf16aqZnC)iX*}7nTjK#(&P%}stOV-PZ3q|<$Hi#y}YU$;5;&{nPP8b$2A@>BVWU0DdQqgGTsix{) zd9*zN^$a-TI)btDJVK~g4aIzzm}Rb42m43?dKEr*B^vR|#xr{kfQF~`7wM*F zp2m%<7pUL3vy;S2Ja{a^VCe4`fof9=g^I95rVB}}FG9uYHLJqrBYa!ENHn_F0qItW zb|wP&tMt6ewbiLBu99N-v86z$p9@w^KyGnvW5&%`s6_<|FoiqJoW> z%h{pLTC9sy^hHH^=@#YKtg9f~5`Qp7gMRaj97f3-jMa{!05!<|QQNmGX3vDqi2l zSNyKJr2^QVu?sKnz=*xbLE)=Xsf0h})jrkuN2}-6S-q6iG_IW*)u^{|?agYKs8Q2T z2{!Y8&p#x(Pa&p5_wzjWvJI3W@x;dR5e5seQqP;Cr_FR%wJSL)hsO>V1`b2bX!g#J zX_1OCjh^moyOEYMfP`dJiuG$2FNT{1NRVQUIiF6IniZicl!$KE3Bo1AZq4TLlng89 z5oMq&ReK4$5bI>&=>)BoI8SiDE6`zIQqx69p{V9R9VgEwxc(OBNKzciv{9K)tsjzZ zXLKs1b@qG;wn4UG=zj5SJvAam<6UPFyO*ePfm|m&duLkJWtYGEVJfE%dd12d z8E);6LS|p-jwT%9hXB$CL6Q%z8c5P$xsg+xhtoo0ryf-3^=%0}ekU#TE!1hw&0mT2jY$8F;{r%rOuMyWJ*vOj%3~VBSm1O#e^;^<;EE$@zaSvtDKd(`S7dOzirx3cfpDM~ncf6@ zzBMw(gfc8L^h^pA7~$uMarYAePr}p3G<>iu!3yhgRO%+hP2THJ(^z8Wwk*^fs>)=` z3&AG0+$TtcIboNpEMdoZn{KlDPTbG|bJq2EGj1v84}iLzPJ#9h2DFKg%?pAlg;pPJ zTr&8?IzWMx!LXfrrgkwE|8+07rWk18%0{TKb#WuU70y_-w?pj*n(mU91ByVTM1_W7nF>cpI`hNS z5EJ-2`&s5*D1Jpg()^{!n7!gJFeK&ci|2%NrXDSeNo@iM^`lXiX43*!nYb8{i6E;u z6$J;ka)BL$Ev1($Sn)ml;}RY&^#r{!nH20a6U0KT!+Kp)I2&k3^hEKyFabEm*f8%R z$k9tR3qwK4SQklw`A4hJR#Ap6o3ge(t#028tIDu-FnuhCs(IO-Q#_;b?Pg4fDpC9k z8um3j!C%Y{O2I#!_gz?ZGUy7_?2rXD_N(-sYn(yyp1ZaC1w{p6h}b;4sa+9PbP2TC zr*c1f{Pd)#1C=2Ojnbowr9zv4S*X}Cn^sIrV}Z7b(ZCdW#6pTwIG$AB zp-K6-UD|v0o{!wyv0Ce6xw~Y3$aWdFn1(?EgGSU- zt4h~hPW*w^xl_zCARd9V_k|FaLpd&{`477JBKY~$&dBdO{6dcWz3&}y*QZF^zt_Rr z3#DiX^*gvXUGZBr7|sQ@GJ0AcJEJL%S{8W}Tt!AK(E4_ zl?P^stkBgP(*x6cZl{Jf5A>U<17x25<(Ck;D&N4^cr7Y!qd7$GTbYYmmhpUq6FiWc zye71~`9}89h4nI#F5yu+SD4aGYtD?2hOG6w6Cj8>8&b*YS`JXW0T8jcspFc?)j5R} z5jrnZ%@{E1dRY@75J zAgpfrZ6oGpA)bR?(3i=owXo1h5-#4I9RaZ27gkKuA`K!&Bl~pvT3!@8b(iTsR>E1SJ~Hby`ThO_3L&0`bx*~d2;iHiWW$DtvG?DSL=^#%&V*AcW%YRXp7POhLs z%~c8IYIdB~t(acOWuYb{v9gwG4y|y0JP4tGpUCcMDdiGgv@){>7bFe-XU2PlxAbuy z;t=;aiM)|3Y){@C0Al)*HsZEntcD}HZJKFC0q*up$hg@Gd!sk%iO#rD#mO8>ic<6JwkE~+O*^t=I$vp?DC9h(nA8xDrL#RuDRY-+Be!9=Jkg>_4E)GzaSw|Fk8_BRq*h z#%7lKJd!GZ1@Q<>+2(`FaLaSWX@=E}=p&-FZGJT~iR$wvb#%vspY9P*C9Z%0l4^)r zm1=^iM?xgT^2iNY`e$w$jowu>KC$}cQkB=3RIsqk9wM1#($OGgh``!14Wfd#nu1mx zW$qj$oka>fO37e^Ug0oFaqL)A`1ni`XZePBh6gAfp`(KiZPAyK`2&p6TB{*7{!H%!LhtKN zt?yOm?(68y*KzC4+x^MT*TL$~<>v3NomRi^+}UqsP`I71iPqh>=gk}6GgsXwdHx5M zo3H2E-jC2(zZY%&pTphvSoiPs3;*XU{fN#vKL@)5*UAU65&*KoQ!TpjtVX3~2)#fk z7j>AfqnORhbODmZVbe#dYeS}o)E+~ag+G!;n8R?i-omC=ST)BV5wT&{8&JrQ>aLZF z8c^Ack=)jnr??_A1lQjL+ms7MtHDw5^eWQXV9%&|SC&o6-+r;sHs(Xo7h3bLJIR&o z4Qy+_|y7|LSF@E z-4!uhmrU|ti!Es39kuJgLken9l^p8l&3!|=(2xp?hL-v^hn0af>VNMhje=B94FmA? zsi9+6AFQ9ucJN^}bac8JZZnuyOa%4NUZpy9PG>^X*Mw2pBQ5 zN%bI916V-?G*c6p8oG>nN-JzboYF-|OFjtj81d-3e@^=ih`KOC0r({4Uqi!LO<0o%JpDU{rm%5JXi9}jT0{vmXcex#s!*Iz zJHrnc^j@Jb>AYIr3z*$`m_yAEJ8v-QdEGJTJMz@tc7tw?BAF~G^7;P9gYx>_PKmK~ zvl%g%n$1`Z2a9Q{bF&js&jFdNe5{1Gu||McfqO8=xM*x6Gs}E62%~*KZYm?7>dX*9 z!|Ju9G_Fva|B$A!W0jZFcnpVWL4f3u-@L3JJ@9jIlD`l~8{#5?p*pOX!EB@db^q z-z+U+hGpO5L@>;($ncM->Vq=<<;|KU^%BdOJf4#6N}em}z9Y$F>CVb@j*G;@0ViLk z(Z$7$MvfHb$TH(Vd<4q{u_Xh%Gsk4!%W@IZ(FklWeT*WUM3AJ`Fq6VEs}{D!ntN;M zK7{3-bf1%OlEAV*Lt0vFBBX_%zC)2?VB!Af9i0c zM<%^53+Ar&K#hDaN3Mb#8e`F*p8822`Aut9uTj)+JSkiu1A_B)xQ0G!yIW`|C z;t}fFq*E0qqaMk=4q<6#@`kIF{WD3#?|+WzBld=SX%&=40qtJ!7gx!cPrxt#`MS+$ zDvB&x{SY+tinnkgnRP~yS9I6~m731R+}2kJZbo4qFN|-WWd|r)>(a1Z_@<3s@F2{H zvA+5mED0?k1`G>0!VIk;%~J@jcRcraKURFLEd^Nem7{I}#&MT_lD`6|GWLwTquDljvk-+Z*H4BDksA$g%c+VL$cs05D>QxbP4B4I zR2OIYF&-3Zy28VTMj}DGF}Roy<@i6AkDWWdl>rPbU2_$c$GF`+jK1z09Ln6g_79%6 zf7nr^=XtRMo`f0VGE9vYi2i0N&+ECC&7yVcamPN-qvp=7ob$qcYx27>F|B zE5k5Hza5O!)2$3nw@8U>itm<@PZ593VV*{u8TM828Sn?AK?ltds_OiPbl4<>LMBVk zgae{u0V0z>uCcPt}QbT z>97MO|B$|VN}f{wN{=1)UN2#fiwx@gLIj*cPO*C53}Y>kLLY3zp^Y93h6*f`IL-Iz z64tLri&%%d57zY%Gs29@of;_|gkYiE#IcJ*)E9G=@ldolBFx$~lkYw^aHG%AWMSLA?7KZjj^zDchXnSiwA(ErGuC!-*$q z?rNK>e8f=yu4%zH-9o8unX`HXb?+$BN;zH@`A|gXEpXy7{kk-fHor=H|M=>WxlRU8 zeAXnC*kjPQT$v@XWcfsPb<;{J$d}2CcC~SN-212s*z-7FBTLK62 z(K#}?S1fycdsnki65BK#pxZ*>(wz?yp0u^VO>XRrte|cU1%k{0$5n@ZQWc?*Dvih~D zUp!x+G;F6H4E-*wCu4_Q!KMSsefz_9t3RPdZU~eLsOoQcoqF7UcpmU?4a@42%(BK9 z^S1}si(|{&TsU`onw8OzC^r3k6lBPpCf@AyI54O-!cQX=9UYye7JQj}Z9(S}JMu!z zoto-}gR>qcpo>!QXlJ?zHTx8RS6S!rDdynzyNB-|<04cG#KA!d*Ncm3qg0m3HqT1K zNldNyqIm&e%y33PY&y+su6E@!{Sm1By-YM@R*M}2eusI&PW^K+JbO#(9n}`B-NTRe za8%eE#mngR#xeXya2!t+#gN?U_RdU!nHRXKn)}=BHB;P&KeaK={m)k|%l%K$B$6bS z;@r1pKK=e-su!R(3zb9q{W$9QLaiB*^}Lef5i2vb(7}U<)|a`!r*FK|pb@ER;Q{t8 z0imb>>A*)NLU>Z2+bb62WTO)Q1pvo1L}bEJ}LDD$~4F3-6XoFz1UaWA11zX!Xu(% z2W2P6YT*RRBkx((R0s)!p8xBhF^pNX7w8P2t0wksnZFQ_8ym0pnAhX=Rrta#b*4a0 z(QkYSVLhxyM*RrcbykD12};0ZyDWu6=S&H6TGbjQo9_{UPazX z8hOoyE_}Joah}-yQb*min#a=HjEy>w_T1_GW{d7zHN$g)IcS`s2 z%~BwE6`c)-B?)JJ==7ClQ*cs0v)UZ2W{h-mV)2EABw9%S>K0UIPf{m1Q%Fp>P+6F} zG<}UF2=!QGrZeDyEN~hFD%<`8{pXur;nUlr&$d$DzSRl_v1Vu0Z_nvVr%NX}ZoXs< zOt*fwHRaG}WH3sdXcb3XGN7ixh8MT`Jpo|mGv|965xWm#J?+(ulQf;_GbP_aJXF>` zIJOyus%xUJD-~K6KoX<1e-;VPdTtmwpGmcOx-ENk?(3@VZEzao7KM{o!1t;UE|m>D z7iuVOz5tQdQ!>@FnkW@!P{da`g6j19T<3b~@fPx|rjZ=%}hX4 zP731bU^i^Z;*OXODuRQoxna>&ELM|qyMOHq+k?hC@{-?T4jRKFIGlZTx1d9aI35!X z)l}!CIJ|T@$O*kVPvIfu{>Hq|2OodZ8Qgao+ahKW&!(;XJM>uY zxVs!kwj?i*yVR;>I)TT{?}0Qqp+?8dU0mqv81LkpM;3wJ{ZlX{=*Nfg71tfIzmc0i zQT8%Ak@Gy~{bT%++#@_eIfA|@uIsI|GJKEYih>Hlit*>gSm=}xKw)D;pVK%AA)cb+ z?AKf><8w_nI&y;R?7ftcO4TX#VGC;?kp799mH@S9T355;3Urg;g(5f3MPJ2wATS*P zKSkSwErw4_)+?RwdTQmiXO)&3s;v73xd!F;yP8{E(l-z1$#V#07Rh4hNRfL_eEkf* z`HiS``tW)`Q6w9G>OP~Ldu3&Hchuupy*^!VC5n-xuvm{;zmRQdDBf7AYF7xX@!i+1DD>hN~Gk{N0YsdI7yV2+Ruk(yZ65`(3Z~`t+_lPwZb=Wt7ENe+H!08*?OcR-$^}XJ^9ii0*-hIIQ-Rzn2laf|mf9UaFm# zD8}7>lvLjFiNjH@tzudNGuAMjpuKd+=#bmLJW_t?eg-JtYY4Vsz~TCYdsMF8Rx!^6 zHbt^woNe5f9X8L|u2}dXIh{T8wSV0uhqAg=hN5p6&pJ^**%Dj!;kvaiFBOel&L>~Q z?>*wBt@9lYt;dA779n!uPQoS#7<6~9DhJrjd{mS9dMdp0Qa&ml6q~o!#E-rLm0oTe z@U9H_cl)tTrjR<7Rsg{xofO`i6d`9r7<>4Y$+3KUhsiinWTLIm-J{-OZv;+y9zm8(9y%Flc z`*(P@aRj7%)pBok5v+eq8bNKRS7ih&%qH*{3EjPZz}RGC^tRG1)jA%y8^QtCf)4o` zcvh4>5Tc6l3aFSP4mrq=xg*A-u2KcA=^)8zil|yEI4{^m5!#tpykL?v(g~F`?mx=YgE=H1Z*>{mbS2Ug0~Yp@u99 zFVDVm@nH2&Roo_}4q;}`iZuDTjr%ou@;7*F+CS?tK`VMyn$`Q|HVPj-Hf%iM2)rr& zL)o@5mhkR?R2@C-8j7&CWpy>ysuT-zi;qR)h#2|H2wO+rsrw$*RNIvIT)jBVys^Tf zow%8rY0{W>uJYJUa@>9aLK}rax$e*cO_6Q=GqaJg8y@OlFTd@bTpP(COHGSn<7ali zVCzthMuCxW6dc!~*${n(t6M~KcIrY3pwURaBit~v!?PZJB)4m=X7OJ;9zKKFiT*PW z#lDc`m^`erxZk`;oR4_Usy_t2;qqmA$9nulu-;T-wSvidOJb($>mV z!duD+-l~t&s%m9i+asZsnos%mX`$pPnF7tOk{Z*GkNY;0FUQ>?FCWK@17{-I z@T2U8oRXc&@~?^tOF*oes_9hw6ptR`;9|@-MZs{i88n@D*6KWSeOhk4mqS=oVNXWO zU0dT)s8U=9ajy>9J5gLatWXK>a=E}2G_C{LP|L$WtkRlmEs|hbA$sRP*_(B00VcR- zLwm|r$OmVrr3HZ5pGl+F(yR?;(wZ*)NMV79?? z9?=MJOs{3X9S~^{wL05Ex*@fh?XDacVp?nP+}vqh%HiMBxH!%?CoF7rv;%2j8hbvK z7I_XaJHoScn3P=xG}62ETduFy&?*?tg^yq{P+6E~ zwIe7}o>CR5Jusv!gK?Rj-1h0osC2B|2RrA7-#C4yF`IiSU9T~e{1|(QvuEqE1C-FH zQ~DCS0>6zkbP#5aaaxOTp0vJep6^dC;UFfaD5UBg_g1G%B1dT_&nGEch4I9OUQ7X{ zmM+b}8LOiTRfTUW7c%X;@eUSlHvGEbIN{H67t-MDVrch2A=}-W^7emQ(0XUf2uC2M zt4uvP%2tL!T{-lYEDRV%c0dEIA#o$IovRa7lCU?~d|-mmw}H5t1m=Lj-hXwRmWV3Q zE-*B9%F2D9y-O%!N4>Kg+AeafCB5$4@b&onkhadv1mmF=6UiQXpRS)J=Ms!F1k;7g z9kO;By7&>zQDPP$;PbyTc|{E}k`L=Qe!#1TU; zjJpaj2U-AcFf?QwkP@CoMZu7X1qWcCvcM(IfP!1WK4Nu=lH&~sQPKKi2$^_ycB-qZ z-g(% zad0u8;5UzG{{y1jVUG6g~lguZxG5hYzT|{M`4v`6))YI6-?vK)C>H`%K0X zK}zvL%!KP{NJ18{q88;43-Vk9IAg6z-XWLZgNvjF@S-4=AlQm@v1#%GObM zV5yYn+ha~yWTe)Ch@;$KKVbwD<|(QG0t&rJPVB-83pEIWx+?W&y36})%LQkCq8{k7}rIJee zMIp+C?izE@RIWsR!Qv;CA)|Gkh>oY76v zPS5{g_7b=Pw(FO#+@5bm*lyS7!-c)Sd3njj2Iw}oR7_*pF#;7)N%c;#!k3#lglE#x zK>S_ofMtCial-y#vzu)_%C2aJp#n#wi;YPhmu^_he zh1%i$NmbQwKR~V(53e;=F}pT*wW)eqFGDJJNs~^S$30lExnT~q+Mq+8^IuWQG5gp+sC z=_)G@A7inHN&;AV5Boe+O6td0mAE5?FJG24vzW*Xvhz6&gDDk8$DTC=(>_KD9sGiX zZXQ#=8slLqt7_U;>C}O@x<*yv1}NM9$WxrOSqA#V17+bV$|#daXv$e$aT(mkN>w%n z_34nfOI4N;HO{*pco8fbSa9i%6asLy%)EMRQ-j@a9r?D7N~31z+3KGnm0Pxy`OwQ$ zBVtdAxSI?4o_P*4Sgq&8`FlGOfJmyDgk`A@&cFyP7h}ybt5lUu)%iu{<0u(`WXErl<0XoYiR@u=1eB9(pFt&gJRR z?lj`WLfq;fvaCwk<9WU-VJF_jsBhv!+HMH*%ezcO20u1-D_R-%e2gQ@8Eqa#6F8Pj zD7Q({q}~R70$f#pN5f2=Ts@0sI!mm+-+Bcrep9!|hs)BLtgUc3veiA=G#y3t68Piu z%NS4P%~aMZRoiJHcFRhxolWp(HOltOy`tM5-M;m2T?(9Jm75)NtZluqw<^F!QRH2I zpNT|fOU03ajOvdrP1FXjJ0k|30fV<-;jbu+c$8o3>tVp!9~n3b8P13nd1@Yh^_L$F z(Z7s5(u)ix8gs=@mI2maD|Kr!S45s>eG&qvNn;rH8e;C*usEh)wb~@!_S&wqeG8_$ z4bj)l4wA)!6Y852Y*qX`=_lO3t4eT`{3Nt-Iur4&F~niITUN?M@qlc6xfxmTuz@Ot zmVXs)oHSnNPG?2A^Vg83AG&2|P`5#{S4|82>Eh+U?r(#+5+SrH>J9gceJaSf!Ezyz zmRHKnt|XD5S8spt`qD>RU?&^tKGwfF=Js(|(O_fORGjGy(bDdFiuJ`va4lVlHk-GS zxTwVYXRcQ9Y0Bx+YT8@V%o-^QTDvUP8o!W@j^nyuTo4@$K6~`&2wx!W5!8xfMIm*< z55LbrAt&S+3hgTU2ZXMp>fpT?mTZe;7IlELzj?+!RSndp%Q>9Us600O7;lQqQ#p~_ zdMG_K1jP=qh(}=fx1c`K?((1{i!#v-stIf9+j_S`oie*VWEI!lYi*Y>aj57fv9qQV zbfVSHtzJ|!*q`?+9;J)E7=EB7x!TQHWnMvfElHQ6c`m6KHN#e|=tkRj3ZMULL)Riu z@U<_n<6SUI>lv;9R`8x&^N-p9EXlOh-iO15%Lyy$JVqO!E}=3H8+9B@vcXRrmEeZ< zyVg28ZZ+Yt(tFcsqS;qFmB!gyuF=KQ#yn-N3w3hiC&1%wij!zBSW zOUKEJE4@k+1_c!>U{Lg5PSIoH_vO5HnDF6*;);aWP8gZp?6A~@uwLK56RR4Au4(I- zG#Z_waIqI6KfnI7PWunhyv5&Z_$62%piSEUhokr3>ontOEj|aFQM4VNPb5^y0Mveh z$ijl(Fp;(s&ub|~8u%0~w3az@6Z2`dBNJdlbYmcbxGwGmRMI)5rAgE*l8MB+QK0V7zHcwB zR>bep^Dk`g;J^P2{P7R7fUdWVU{l5{kS$do31LMx7I-Es1nSCjhsU$;DA6#Fmuoa=2 z)IOT7#kHr7sLKYEcIsahhjuo#|1{WWPiCX8156d&!hAKYL3JAyLB%atnyKsjwPCWH3mQbsxo9ISw-oHY&3)<)WJ$gm_~}vT;ycCVtF>#fT7s<$3I%$nr z;`_1A3*nWrX(Bfa;YmfJpEDMXV-cCR4cZija!*-0sf}q~Gv@!BH_FO2`qxo*28L_) z3j>*MX+MNK9?CO@hn8FmFeoXDk8#iGPD%0anM#(P(Nim#B80d9Yt}`(YI%ZdKoTxv zLZr_VukS6Tz-<=sC8VxA=>R&>vL=IACQ?j`m6;F+e2!IKV1wh$vE}A4#V=>jCl+as zcIsk8aXSNPA8DJj6sK{I%nBDGLXqlJN>QEM)l^D7?tFr^E?P=b-RzcF#Vj=2XcZr6 z@^!p2U$H)>%-Ji zZx!ivoS6%PYlyiWs6TJ_2{o)%jeOjIrdWzu+f`ht4U$7Rj;^}n@yd2Kaheg1#=cqj z`WW0zg)rB{YurkG`umZ|+ukh396EOOUZgx6Mkr zO+w42mAg=<>UNsjBHTa(!8ST5#k=cn`TI5!%3TD2i}N+E1J*h_(mjTl(Ftd4!gHG0 z9m*N7+@-d?4Jod$oA}*!iHx<4k7PE*{*=5_d zy}xv!Lu(mzaH4qn9M6h!7|v#BZn4y?jWU$f>ltiiE0BT@^BkThBJ~VJzCg{d4^}(M z@HNVpM9Y_MFC@{~RDFf}&k4)jKLwLLYbBd0ol=F#9<@W0FTvH-vf0V;d7NKen{UFCMuC4ll|?{3`o= zD0D>sszExIjwCcXy=XNWg{>$sUeyAo3(KqXDl%&%QqGSxTjxfciK{*>p;Z`6(3xt} z$DrASaH?C-t@dtBI8@+nIZQ!n%oMgLF9+ald!rSomWdc9v3%v?3#JldAKB`|vu|#_ zqb`Tg=0cTU$D62&kO6E_*{Le=U49lceebjuhR)4vbDZVwb7{xpN$+1vi<|D%vXNp5+ zgmA`U&Ar2yea(I08V|^?1|2Q$QaL_SNa~sBB2PoQ%yD9)g>b0KopgUG1Ox-jHi<4j zkixlIkH*wa3;zIfYG_1NnK$=>|EV3I6&H&ya&iAPf}_eksAtn10Ss^29de+GWLtQi z*Q*QnR?UNJW65NzDLx;*tGO_LK#~s}taSrYJ1i?_-ifCoW&|+oDNwHM?8ME+TRj=x z*(*qj1LjE9rtS;>hDSJP{}K$1bt#U>-iQxjvddwS&lY8|ro~Ji32~e-NIBTXie1=+ z9-$Drj<`J`p1Q(2pRJKpFlqZ|pf+=2HOCzYeDQdY zh#+0ExZL*3MRXTo^%D0Cu)J zyHIGKhjkW<$Tp}}eeFASGK0F&jd?YRwe04{g=Dx5d`F^$rlFzX`E~~YXBJCDL*0PD ziaLlj)dnV+s6vYEa=Ff%uaeRPgarCBI<=obur#}yxwI6rJLwi%YGcy7xDQG8}3PBO~d_p4B| zqI`3?_A7~=N#9Zjp%Ug_uL^TbQ-tlXn=c*18rp`+djgy2Q(yF`^mM++tf#Y`T}vQJ z$B^l@u2Ox>VKqh-<}`0m<22uK5<SKTb` z#WPJpR@w*du|J$Ldizm^fzfbF{>=YWTaGqcK3V29!;9{X%{UzhJo>~x(Q*mcS1s-l z{H{ME4@V~IA?JMZzl2o8g67EBKk;pgeBoq)7TBJOUEoInwm9Y#?T$IXLZZV69_3Mb zy$*Z9fI!TbBmNGKFcc1nIVcEOiVBdi*xhq${`$9f?uMXeGik`mNpX@^og=q3*}40j zJD5S_rjl_i=smAox3mBW)6n~9FGjUi9h;1lc4Zrv^qIj8R4paFsEXV~Q%b89cP+)3 z#xhuGL)Ys`F0HX39HxTV4c<0Sl@t!)W#M6s*W^#D@w4gN9NZ3FoF1)UK)=z#5B+TR zn%7_ol~qX^ntpWt4);6b{=`yFwWhFI?(Z(~+25ZhL_S+DU7a_lNzj7y!>H)hSG874 zo7OIODXT4{_1m@|yJpFG>ZXBMm4hE$RcszmNasxMZg;wzLfy2k#jo(yS~eH3;`&p^ zANZtWz|L%SO!|twDVi&kiC1my8l)+z+4Ya%IFF<_a30|l2TBLYDLIPm#dA;Q{?AR^<%i^v_riiW6e4wsh|G1XOQ7Q)RbU5SbUONS#WUtLx}NU7>o)k6FuS0HFe`=5r2?_^vzy1;|t z->thb@XA?wXta8p;(JJlK;yIAjY1TVq6w5j1rq3Z>6q-`MuKPGvsJXK|_SybuaDQ-uIF~ z{N}FsE7y+}ezb|x|MdgK;;Q_Qg>9j@^=+0v@04X1ewk$Pv~~(TT~VGI&PjCXbZ>=u zic(2PZz^Vqe1Dm_D(Tk5o+scYz^m{NH|vb0C?!Nl>XOrF9#{Oq=Pm6E65Kb18CG*e6JOOFkdd{Vcq^e<$nfu6)4fgYZ0dOh#ALw>-fNcyb>tWOD*R z*TK!S@vT2`PYUmd5dK3urrW#IIg!$f8Pke({U^fK2I1h}eII;o30afaJQcH&0d|d5 zhGxgoT}!D=wY#GWN{8+NjyxZI3ttX)JovwF5)D@=F$I5R@ z8iqDq3G~HfPUn>upFB!q|5DPjOT5CgZ}C)nL$?g&Pe_PK2B6J5K*Kjmt87zsDLhJZ zcv&F{&D(a@~)L@!|wp`*nT8J?n!r%v8jw{Cm?^Ka-sLT&#w zs)7Dx+Wyb$zlDSv85&y~+1r`^*MMP=|CS7l=oH`R@^5nTzd`tK{1*rE|8Kgn@%PlE zs;ix@4KoNTBXB(kB1R)nBr15A0bD{vKDY#YEM?0tWXY0DE~@{giEtRZiY%ZA!}Q&vYF zF1s;JN`)3wkSZZfqn1)ErBp#3CANb#Ta$`4yYy_*NJvT=GV})$o={Z*s_iMDjZk43 z{b`c4BL?DOON_&tB| zAHk_6Gz5W_Mz6^;J@Pq&wxF7-nyzr019AzmH)LxRhcx@W!e|oy4Jh(iR>UCugi%`> zzZgws5~(-{RB9reF+zwV_Mq=c32<+|wmeKh)eq&SGJqWQ`;=`U*n=uQ3OwQzaU}>K z$}&C%(2GNIl6Ija{}=Ndxk-Tl5hb{0%tDY&zL%(oDmsQdhFwRDAyzp3a$J=ixp6OV zV`FBlH#M#cQ?I&&B))owO4rZft3a;8yo9EbJ9)q?(khJ8(yV>5OSa?q z-@7Er%;&TDxB@uf`&CY2ha^P|u==`Ia=U>1ftPW1U>p1#dlaaYX+WEie3Al+l=X{D z(b8`;GY@bpA1sT1Tns(Yi`9jY@Q*dB(@ZI#0@~t0fAQzxOtcBL(KUcTK#bpUs|mrE z-y3XuOj9J%PY4{P*QcaXSQFSQ%#P~ZK1nra?J^iu6Q>`LJiW7XpPEL!1{a0jl8#6L zI8y8>Zjg++qX8ZGF9X@@+5LsEB?tZm8EemOUopRJQBG|g3>i|_Rja01m6EbN!SX~* z#9)=fNExUnA4hV{x8Im1uze&*jiPd}*y@MU3ttA&YhE$1Mx$T0A#BaF2Bv0w`a1Tj z_V@SM>lnJP*XQeDqppmO*WdFY)mk5~+mnGEov)7z-5LBWua|+l#8P#_2Z4x0(b(8r z9yM5s^VDWeVJp2ItgPR<-B6*>-oTq0?JC%F0eD!!R zkph@Sm~_HEd1(+y@w9P>u2mGy$^JjO^uh0qTM~Ejai#$l!2z4_Nd45}rkE~LM9O}d zBA{(3qxLdEq*cRx6fIN7_T-s3{YJp>;*i~=lyt;7M+j{tRqAq(o3`ZX^D9ZYH5Bsl zs)rWy&IEew%2Kl6EK2m_Zbgnm1Q!jd@v8h14qbn1nCwG3`6tm<;yJXt1C*eu4weHA z#qA5`AqS2)h@1#Q1-5V#1oitX#+k}+*!i7+f(-zjm7yOgaHRdIqlqg@!a-M55rg=| zCP{$qq@?-OdxeQUIkD3YnCq=`3&&1B-#Lyto;iYedHl9#*yit6Gp7w?k{+&5EQea4>D>qQ)$F)uo-vmT_# zjvT}2PBkNARDKI2N;uAnn6y2?qaLN*N18JgQDVJ=N)tKmC5Ic|k-L=zK#ghBUN!%6 zU&>KocD~h4$`-TkcuW>IAgo@j_gk2(%UckKZqM5RI0sU>femrWrbC(>A*Tsa64gQ| z*GZ^E#uOG;x1WHX$+bJlk+ZI|WVZv(!??O`XVXr!7bQ`6ky~M6xZNCT$SG60PBA`g z$yk*u--76@NZrCz?lN5IzRu!oK3oq*j{=Ay*ve%07o9emt9Df!p0t(D^5)U?(@x}i zSj&E5e8o>|sqJ|{>|*xTlyS@ASMaVl%1L=>P{*x)6O!2xK`*@N(VJ=ioRQ3x)Q*Pr zT+Og=sNA7tLw>kV?~iU7*vbMF;5U}1{nl9_uyO;||nrMd}=xL$X!_K&BA2g4CXneUY|HU@;QM4>!T zj^v@XTrTA}&cU-DnPpn&hR%I9l<`#oPY0V^YxOh>1ZK=3Ad}u3A1`MNWv3VoE`Dt6 zB2*TYA0{BoL$^5Z394C+xbI9kUu;x9>6(+9GH=%6mr3YPPZlLNJnoQdCIMpx<4z03S(Nc2N!gBSrRxIXyrEySDM;0e-)yM+)Y7S^$ zy!pF`(1HbbS)9HaJT*B~o z%>T`OdP+^&_D~3``=yqgBUA<+_gA_w73(OHej4Ij17?yDA9+NTMaQOgg!WN6W$8kP zfCePt6(C5cHYAN$Z#3|J03Y%1!CY}Y_B(X9N-I~@wdue>q5LT`KbxD&FW9b_19sA*Z?hgbWZI(G=LHm8 z^E@F@AtZZ#gPvAEZk<9z{e;0XJqAQEX+QE2#E){9kW*M9k|UU{XV=*hFt?=?HaA4} zNjHDSA8}PGB{3lCG9gINvqMIrc7Y`SXZ0L~Nuq!fCF!WN2*@)3?FzNq_6eNmx0(fZ3-LgW= zevVV*Jw&tgeTsdcy?TPW(zaz+$}%8F`1r%{3nZHkxcMkwcEaS0o$9roa?;Y9BrOa*ZBEdFYvk?>>O>r5VkL~Uq6cL zH{hYQFo=MP{umDF(AB);;?0=R7qbk6F+h-Xs0ke5W&*_Q=-B9PQnP8g2z|Tk@Bn)2$q_A-+_xQ3X* zd_x&W%#UO3oPO{B6yJjK$K+nA0C+|sG*Lo*S~rkxXjt@H@&$`XG$wW?M97$9iKR`? zE}bL;yD#1*VAhMHKAqZ9WI{5?tPIAAemlhkX3PxZlW=y)(>6omTs@AHqFmS_^;g1V zLY&ZyI7kT$D4<2QNN>L-3oV|%F9+XV?oX$mx?k@@PaV3t-;dJ=xxc+W-aLDJ9+XW7XntDa}D>{K#V1saKahZ_=4!|H)BIt2FO&X=0`U*>Q>VibK zER0_nC)rBvshnvNDPi zHq%ryr4KftCLUOoyV??(?lEJOHlFHM85xQ&)8v-Y(V%k#dz;NGVY3qo(Gr7KHXb8+ zq$x9_u(C?D2Fctor=8;5o&?S`Ys-03;r@8sfMM&do_geC+gw@?Tm;*+i43pvU}Y5H zRQ7B>XN*kL_okP#qm=IQX4{wO{9XRhj>_{hGz$uqL$v>MHmn?^h_txeJStF@Zx|NF zPw_}fPwzy{l9|dm?u0uxja0G@iv~yqq2v?tbwuF59njyNQz8H14~U#vbYzbcL%u#a3aDQCnLjR%TaefhZIFv)u>7kj&!NyI}A zbMh(2Mbz$Zk(-m4lraoe@_cYov;2vg-1*BNoz)eNl?dE}_2AUp3o|@Utm9?|H3c8= z8Yucd;=N)>n}PLdFjk(aoY9KE`_0XSY~enF8rVB~4H|Xfoi%N6PvJip{2>8oLA0#k ztaMk!f4@KqG1DsGqAoH|GLXYKP}UbFiJsh6kkf zP~wGlaV?o}ar{93(8I2WUi+ihQK8Cr`iJ@&UUeHSq?+lO<-y|c6n>LJEi-zlYu4U6 zL|KJ-cxys$jx5ydxHG*LEDs*i6mW9#a5!KRW-I9+0j84Q(-j=g*ECE7WkS!g^$T-f zsE=Japu&dXrLFxVM0S>+f5hzE?tDHgUvt{nGwhZ$x$hcT2+%esbe7Wq>I^iX*}e)v zPac=LI20=;^s3=>g>csjn_?IvyFuIT>5jmzn~|9?Lvj~qL3-piYZ8dfaPFB^L)hMb zA)rd!@b^56Sq8>920L!ep!9a@>_arv&-Oy!IJ3q2T9+cY8kw;+K*ZJ z@kl_+eX@-_+5pVfYKs%wJA;X|Sfd6_r9rfw*>ZdgRzsM#L;3huGQ#FLvciw;7?yFx z?Ml0lkzIwYUtFX>-%U2tXFLOIWgzxAqL2(dOdzdA*d*$(_9HA3>$J@zPxzmh*|;Se z_sRmb4*ctWtNF8r(hGB)X?KZz`tT3)wgaB2OKmh|ny$P^yMhjE0%9$;ZZFD-}y?}K2LAWoe;JsjNg>C`k(u);ZJv#>xU{u<)(v_2w zlU>)}O?!ZSzdlw7lX&sId_J(@?`Q0Z0EgK*3ADp-(>mx~`UqDIR|D%!cd-UoFjio+ zOxxfN{`j-auo2kwc0wMM_-7)t>TQSEZ}ifHanaxOw?RMPMR|g4gtWmw07ijBxbng3 zMXb_#f!RUcPTZl5;&Ed?#Xl8<4#YN+D8wF@E8Xb})naq7pVHt2i02Fks}N<-%}Zql zqjhn3U>?b5U`zsp3Zs!~NJWw?qWXxblE{Y@3FDY2gWB7uoU=9to?(ZP)>-_ z_H9VXg$t*IP|kqXo{k!%;+q0z9tj zUc`VDE_hBb+pL$(96J6N<^*;g3D-Q}+e*kQM8_O}<>Qku{+mmN7N?-q6_5aC7pqsl zm&tE}Zwdep*co^c!>m{5nTm_p2{+;QfHbsj-8!Zj{VXeAqJIpa28+dMeO;h5i}4`8`X+h3|1u?E2f~ap!9zjdYpOYh)a0Hv$Vp$iT9Nx;$D&t3QB;Du&gNh< z4m`AXx17Nh!rBR04C@7f@7?(Ebi@|H;-o6%IJI_BFqvW|%Dd46YHiSXtqp_Bd}^e)n4)>GX-RDUR+#@kNUXC&Fs2_ z9h!74nu-9}MO1nu4k}mG>QT>JZYn(ivf0th{l)c z-`r>;vayR+E=>?cQA{z|KCFc1dBeYgc@gUs z7uE0ozMAtdmn@*05hMO}o_P&mU>0yvA8h0(Pu*oHG|i1l0R6L!qpaOj6}j6jpB(b> zt^#W-fUfOnEVG>99ZT-Qu6)VS`sS&8*rSWiG2Ex9ch*LY8*41Gs=7iMZAH6SDcD=r zQIaHWl{mOlG3YDow*o@!;14B$o-s%!mtwA%r#gQTnawCfs8fx*qb*7oK(1MBZ}2Sc z_qF?7h{KqZz`HyxtFpf4`iwg-2gnMjn8jU3`8QIPbhp^F@utB<@utD%;krRT@wx#r zquFJ=phu66V9%3#St2&iJv+;fm5sblr!C5=pO#E5qq(lafnmsCw=3vx!;mJIl0~+Q z`(<@@-@UtTyd?515{)&ULTATaLg(8z4nMB@^w zwCB+Cg?9bJIVum?CR30tf}TaSx9atw7zEv;0q}uO>#1Xd@fA1qr?soWl>$n>~uhc$pf*ueDkoyUO9-#Zm;#rA! zFIZuqfuj`falsaR>XV&9@ZG>e!nuMm`SAQw_$wbHBZzy*=+ap8hR}!(C;jFFKMJ^N zpZJs7Krdg#()&Qz1K;sgTLe#Ml90K3pvq}OcCt5b&Dm4ofFi>4^qyYRm6Y2mU31Z)_uBf9OVL{ShWtKg8d&u*G_A<;>O?!A>k z?tuKGW<;kb=x!~mmbY1!JU-cO`P1%!D0G2saz|O%oX3hpV<2=x2DJPAXD#ll&dHms zRjR#ck{V-5T52Gz;eRdUwO#zj6<|&h23S&!FI4A%g6%L#O6E4IrX!j~YLgI`3m-4F zz|*HOOOetYB^HGuBRqUG;<)Lk?wM5-qy`3Lhmg@q;(u587_d<<94McLcQ_dmRJ9N=$s&pQ!IZyTD|sL#%H5jF&R z5l_-uIN{WW=u{DTHOoagUHJTMe{!P~x=+shoL>InUPu3BZgS|fVAo`Q0oA>YVrgaW zo@O9BG6jG*+8F2EZC(|5Qmt?bqXmodS0c|0D?SnFiRF)}t+uU5uya6#Y<*aTWc?=` z3rYZPYHgP?N9C#-MRX@;S{ak|-@J0DN9@Xq^XJEzu;rg|s15t^nF|hB)6n;5p3*Da zHYzuKuJ|RKmzq9r(}}A#ynWAUnvbrN$J5RYyVF8k!4EV1DeMnPL;M@h4GudG(wb;e zZG3aKH|Q~-)6@dO6=x&o4_@&8ER6WJWbe2DCTrZg=w}Gay>nTicv{fVi`#}=VlI^a zreYL}NDTh(_$|Lsbd1jF&yhh|)CwOyL5K^`2W-8SQh+;vaf$Z57JQrL77ZSIMj~w1 zZwv%RSSp>;U|Pog152-A3v<)caKl7VaGTf*Z+g{j4rQKZtkA3eN4_HQKpv`rpGVX{~oUV zYz6$6bi~=o+{*EPLM$^YLc|_F!RbGT>|cGzzW`cXfd0=xOEGCW$Iw6E7Q=tXEh(sh zFyQ|QxBMGl%2`N7;rW@igJb{zApak4@8qCw<7i^*VEz9(*dA$YIc~He`mX5uQ^Ln1 ziPtAyNMFF=Z<6FZFgr8WCuU|wg#yRt1!oYU0wo=OJ#A_Gkr4Q-+Sja1D#5o1(V|6u zzFvX91x@8nsV9vvc5vwD)=VG!_E8o7imG3EJFbaiqnaX{OX}k0{GxjAJzz&YrsJY{ zqNH04$S$FH4-1O$Mv*|#M5Ggu^&8>B43`Q|OID|bDp9R78z6o)y_sA!l_yU(y*%0v zlaAA~vW+hF1%`8VA6x#2F>W_0M(P!yOc7hvz9g=nlQJRr^hlJ*5e~R2(wSpTfeh>O zX{5d{KIWV9_W|xfN{z9X20Ab;emXuJirlhk-6gpsqO;K{3X$t_bN%{zHFUJW0U;&% z+qhgV0(IY#0-F8&KIRT~6#0%+Ed3sL0(#gM3h>1#=KdP0oPUd{Q!{{-FEM9Qz?r(@eeA?JmlkdHRvbfF0P#g~BXzbGQa7>}4m z)j{zVt;hDJf`W+?YAsZs0u^1(*NM?qG4Jdcf6rxSS;Vj-Qm95^rCp*CLe+N=XGz1j>3QFb5{zQO zYT%u#Y0u{5IkDhi$8(t+EIAfxwvXU~*(tjLqfpi7aRwkPA_^Z9nuhX5M(3<%M-xyu z1YjKGkEwOI7AK|0*9~V(HWzijQ_yD1KfFTZcD`|T_85egr@8;_yTA2DXP26-qM}t7 zsbx55w^fE+h?dnK#KY;6u_HE>0`#GcKm}5Rln7{Xy(t)$h2!kD6SDk6M zbQkIQHHySGl8BBhM|k7}(@Z(L*PXl}D$h?WxyT|pl|qQV%z|RI@(mkoT|RAWSdo}f z#1aGRA?)_zss&CFIa+yEJvV3VwY+~2u~~t^N9F*7fC0G^0AT!^v|xM^d=gt8J=?20 z;2ySyI>C(SuBnfQzM%IV7%73LGU%FcYTP-k=#W95dWF($P1L*}nmn?%cN@GDfZtv( z4)_bh@HLdjR8}zQomQ$~h?d)f6Cr&vdS69L_FcsQ2Mcn8i&lTcyz9C}uv~ETeZT^R z9*A{lyYU|YP<9hp5zYz4CNIX2ui)YIN^&xS{Nw^+U~C@BxRBh2q=cmjYqe7@ za`bIhmO8MW11s{s5WZqr>sDjmDjJ#eD~kFN|n>r?`m?DEKZaVf7fZ?1-&dqp261;PA)Ix z<5lhh8A3AUi~{?d$vT3#%B+UmF}~5OoZcfE8BJ=v0+-T|eL!_wcgJYwdj4yOBMN|yr7%%X z%SKFFPAVvmJUx0tvKXpaj+6ah)|(|1*oNjvHKD<}vJSxEz;C%n@9M>g-}zm1ic69^<)Z~|9jOB24T8pQJ~_OLcx-aOyTI9PO_`mqe*>G(Ha)dMeHuxfdIQt z;?>1#D{X|l_oa$X&@L!9WR9P<^&stnVioH8u1l$}UN?86d1FU1>?#i7$7uS%;84qE z>u+<7rf71GSAb@&-UiVsD~L&V!3!a*W7Lmw0_c)|LeI@XUtRn#$btUb-h`QWZXLV{ zUvCQcpXy`LBB@{2dkBP&0-e{*yXSt3Eh~Rq^|TL`@&=JbBw@wQYP z&&8R}o@9=cJTf#ckc`2Bm*7`*AD7X)fI(&EVg}bk1EM*jUzfF^;;*>wL@euOcD^ZD@UB)xAIhB0d6frJ3qUqmhPCM`;!zEGDeznLQ zq8Z$!quT~W+sN5OxW*nvp?xD3 zL3Ju{iFup{C`XWM4N!=Y4 zsDl?5AN-#kLx+%V@cIj4d0D@=nE7tkT+#P8Amcn$S1h6(#SdLvdvAosYBB4f6a80s z5Y>%nO;w!k?LIhN>GL`n(X&mX?3VlNp_m{azGtlGdoG*+l7|pw;NzP`HN)iZn9t}SotmqO2A(&TMvAXp z1FkI>lJ#knjdU%~g>ylz;~b^+T%q^*6YubcucWs)qqQyQj&_BNq(nnDiLn?)Ql7IK z5hLZ_EO2Jqe#2v!kDY_lRCVjPWrJUhy``+kmS!jQq?{74m_EhNaaHpda^IreOs8xw z?UMj-@kCsIno4iA`89uKlU1_D))%mtAK}U~4N7nT0E2`802KcREr?;Wx}+nnDC%|kdrA$SD*QxDHobpPf?`6}U?1N& zWE^{l(h%*67>TmPkpjP)!_fZw%^ChAtl}_G(?;E96>T5mW>z zH2cn(yS6%U&H$I2 z%5s;WK9OOgx7hXu>!IyGF%6PS|UyDqY4SD1$c z8(^3JD~zoHg$HVmAo|BRB|;xbX#6aeNEY>qrl}(wYV+2|FJ(*Xh}(!BN_qEEe8p9( zxRaJeyPya2Z{;5Qm$cw;Q9G*rEZSHA1~lT*tb;{ZeR^w809sS#{vygaU#qub7UqYQ z(ah7jKgB*^Yx>FhsnaPTW3YKq4?;yqVd+Y4yc(g8cu&Y_Cj0kHF#Fa1F8;y*j0_IE z7lB(E@&T<0{sYcI3dYJ%8{u@ueqsiDHhL+Ky+p_9?Kl^aJ&ZE?JFI`h*cFXE=&$X* zn>Gp;%O*I(P2>(T1cBZ>i|oPE?$#Oj8y$A9z0KR;svGO|EjN*M{4TZB5?;osmwqOaXRPKO60N*U%-&3s+y?`hQ@v@YroosPj` zw*Wkm814`_Dq&2{BfKACkCi7XG2kYHCc>1ZCd!YYAzvltlmuoZzL*{I=S`rR81wSF z+$k^=gyr&5nsPhVjPNXTd5;{@=#L5RD6)pvq2|xuPZINjE;p3FDU$Q9Mb3_&F~UF# z?BZvT9NmDn=R9We%tgC%Gw1e{5ZVh3ZOMPFEl>@=6}Na4=q9h<9512@-4! zU=!VRJ>JCeVvNeynjk0HJW-M$1 zvQzCL#&g9{#Ps!9{gT<)V0X|_UZ7?Lc#j_y+N<-E#dE9qj(M<%_=2Nh!seA9@x<$k zobi-uk;_%476ru2_asVG(jW7VbzOxQ^`D7!^E*m}C9TZPDrRE2bIGGf$wwWEMO zxT`0_JG^K|P5X?S0H(#SHqginet~jUR;s7G2j0X4&G$7NfmdkeKVjq4;r-gCIa$VL zJG{P*CRDd454B-$t3U7n=dvfUjav&jgH`@h6TKI1z{9>?QS9h;d+I!@J3#%!VK{Dv zg-gjb9CfG60$*8Us?rP@=^+MxONIllHMec73#=XnGx(Hs4STm)1I98}Q8{d2Ru` zkk_C|Lr2teNncIUyK1ckQnkc~Wxmszg1_R4kH*STYC9n08<*{yD<*w4_XF@Y5FrSSuPo_MogaZo^t9r75Z&uJnh=ZzxiMpx#>EE=Oi02YGHT5PB@j5;-UTK$zX{x6C$c59b zgOJ8fHdpzy_~Z&x0(1cx3q`gX{K@_zND{|g5qwRRxfVwBND~P}Y+MgoeDWi`6U!#Y zn~cp=c^_jt%`j%refJ7E^%u#}hd374h4~=ChlAlpNVzN)O8^@y=aaBg!f|t)V!*0X zyGw=+%1I06vPRGI4vWH0>dC?D zxPvKokJq5u(33c@;Mm1ut~-`$E6DXMNp8pfoQci{$mDsxx;L05z5Ufa%IFicBxBzx z>^Fk!6%8JpExiqW3Oszi(8}O?(_p{mHByGD?YL)AD#{B@m%har^G1gMOyd{>=R2)M z&uP+Hq8~Tn1~c!&d!NTvh40~m?)CHz{W^{yTmp1$ar`C`DPAf4CJ~D4HLhCHW{&kH z!E`{Utbj%;6bAT47Mh^XiC?G4Z|O0OHe-J5n3HM!HMZsy5^jRz(pejc9GW|`@v<0f5{&HXf#SB5>C{}A&W149*e|h0 z6&Pet%aufcRL=|)5_Bz{ss8xVfe5poE zFnJQ>P=kJI`GQ~8v1*EFlm=(P@{E9|=vL-4L0k-)H4b@wXUJGt-68|F^ea?p^_j>f zHdM-gC#%g6S%bFmT*3s?r(hxKPwsw!0lrQT&>S@NeW{6N)(+$)Tx3x|)+=c3RV zj%9b76DXks7ytvcPB%Ssypq7j!sQBRx2f;%ty3dPp3*mmcPufCWF5{ESVRo0r?g3> zK-n*N(Wsng!Zj!{I}d%qL_J99a!yJ;XY#Dr(q4dXu;et1#{S45WzC?uzt+cJwT|$x zh@XBnZl>EVeF*Q-LHc5%*Le`}#QE?R$Yfrk%=;d@#6-eFB>?*#hScqd>3UbGdjaYR z*J+HmKTV-U!T4m~*I!ytMdXo2rvgq=wnmn&~wcMphakOqnoN3eoT8%uj-q zy9}+bwCSGCzlhl^Mu6IImH4GA2c|2@UPZJOY6x8tL!I|N0-q+xPFCq66sNRpfZo{c z5}A6WJIGjh*>`h9(vJvurc(PR$ktA*NawrFIW|Aj0k6|hYzT5KQx2af)}A22-B-n& z%ysS>UXYAk4kgAclDNsPnwjn2G6dV#oj6cKf%RodfWnO7iFkluRbna zi0j)gsUS1aCetwgnpxeEHY+V-G7X~?jpKxUK&ZDrsNEXOm+*D4uh2VBdAT}EE8p_( z9-q~E+*36xy|}FMbK~k$qc*eAA1NJu=-k$<=jol6*?(Ln7dXtI4IZz23CsCwFTiwG z+zZ;r!ZWz%(i+huM2CMUo#x{o{haAWJMSwU)NPYJbvVb!xK?4X4DW%tl-%>f7010e z8lWK8JRW)_+3Af`2Q{y!c6NkWdp}Kk)kn{Jwozwb39RU8@PJ7cPci z1U=Ls%(gaSKOts9ysfZ+;PU+#h^`zV@Rt2A{LPVjiLZ(MNSPls1A4IygOw`BoiXwx zY5qc#W&@a^1grcHx##?KZ|{Le85y>y`*XC*4Y%gJu7~!kwVQ!u`l#S}ehx35(g9z% z$4H!B5jCp;5=YB`PA#n*kmoe6Mn@`*KKgJNQTM=4LwT>6L{uBSWTl}1x^a3F4I_@C zX}`3Jzuvr+zZ)m&V0tu+eM3LM(|!=fX)am4p!I&~Sh>D>5L&cd7kc@VtX7jZv}{P4T`hvt)2!rz%yOLDq>|wFrvw;fY1bjhM*z+aCK$VFQ?V zh?hMhh3luXRf0|Vo>q*#tJub1S`K`9(i9;~Cd4LSyB7`IqtosIICJFTt3fn_+lTk+ zn?Vjto)og3%72By5Cz$>3wi|f?467{=6_FWOH?3XPaJ6tiC|5;ndr-deU$2NY>V3a z5eWh2tplUPkIu_=F?R16gY;YE5CUnE0)PHEOXVm1oB>=-WuF#U4;BL%^u&JrU-`|c9Gi^ zy5vD&Cw~`GdWfslG$)weSfA*e%DqDB{B8|3Czh|D6avqXbU==LM`K@1J>agkD`pFaQ7zgnya`|BpNC8|hpB%!4PZ z>e_CwBKW?P5-fsG_!qKoO{7c#Z!%v+p-v%iy1r%>&({r68JJuCv*Rl zG)dktGel-gOxPqWBz4_%c$jQ7x&?FcLZVPjF)dQSWE-^RD>I__FqauVWMWe>6W%66 zMj{qm#1Sskb|GN*PjL+Ha*aCcebzJvOzxXBU`VcGnz7^`#n`_i#Czz2yiKkmvp#{ zH1J&>1gNOW)i2ST*npasWF^@|Xl2cw#S!h+D#C8}lBSm3LBoX8WYo_|tdb0!)hr6m z>WbN`EfsIpLh@iNv^|ybaD?IHmA>w)*>K1W5O;wUN8?WE5Femzp zOq!4yYyqefrb$d5VkE1ylaUfrNZv`4bN6lKArB!wYiS+E(GJ&*x01x`S1&ilp$K}= ze5XV5UJ{XkHI6=2C8=A;@=ob0;~h1^cKO3R#F1ZxLJ$)Mvyn1t9Ni?6^0jy|ogYbR z^62eg4-6RQOrHrTnH+?rd@}O^#m10lAvqQc*;Kl7XOp3lY_|Vo6=Y#0AQ@pAbaB94 zUG%sJ3^JQjLaWJs*GcUFb*7tdK9MdWo-WX>8YwQ#ZNvO&v%WC5L>Y6FJ##67QsNLS zgjW&af{0GTkAu`cfyX*Y`JNq@wq%zs#=SgN zMQw@^>CL&-JL^L7rEyFe3XBHn6uTUoeMFP6ryEs32Ra>m5{gFdYoZStu|#?Dv*HUw z{9FKD4r2e3$R86jVedX;xe-g$R@W#(c#&UyY~iRcd5>^|Wt|d*iofZaHz~9s{B%`k zsIp%{<`?REJwV~&n-&TaF3@++$y0Squf8arQZmnu$`71U1&)36=I`*-6&QiS0>K{DhscfvZKVO=9++K7J}pt0qNedrQq(i zI*@T2xB0CuBokR&@9GxhChep`czEpHeuN|(tE?qLBpM6!VH+zH&%W78zu>xZaGXX` z(e3pP)wQti*?*=Ab4S-O-MO%yL|1t~m4}UcyuE+F)#Q5z9)TB_(Z`axKjL%gQ6i# zH>Tg|N4oyoq=K~m7QhlMqD!><&sKdOB3 z4yV1ZELU|tR;x982V2*L_?*yn1UA;`cliIGtGmX@_7Tu9TMi%K1!I<3XW9Bd zs6k02=#-Jfx)(ae%mF1%KJG~g&W?k^`Ng#$z>byN=ybcwBVj~@SjcXDJ4V94<`gHQ zCu{~_Hhz>lJI!LDz(A+_q_voyVETTG!A{8rualAnf=Q8Dar!YJmv7W!g^l17W#wuA zn#$4@&-Mvaju98<`4uWX_EE2;5=mTw8e^PGIBGab_qWX_+LRsCJS(d`rb-p1hH>)ka>n zEAUcJnv;O{vP*97mfP%=!j7(7#*~n1P1R;oy&U-m1ie7sH}HRy&3}_{GEM@ZF8L`T z5U~F=X#7tl#IRaL*A`nC;b-Gf=5kehoy2-x#m;ZB4I)9IqM}UM+&mvX4?spzUZ^?i zW_g<9rPk9^T49Z@Xhvxt6CpQ%ZV;VsAGmk&Qu|AZyQN&T!?EMR*Qc@Bm$SOZ=kuW) z{-}rZ>-vkFV8#v+z={|ZfgJ%d40qLqZ?=2*9m{IvvU~cS(`x0)2daQ#)rPMgncJSiFTnU48fL*e=9$(A~;WxZvk_m^S7$Yv32wcSAFPcmrSa&A} zP~R5{5cJzJKnzHBp>qW9BMAN~tf+JP3`#?$!!SLB(R{Esqqu?&=}sn=a(?&V0Y3$@ zr-+}=I`ZfXFp&a7w$BW0*ck(Q6_g$2_8cmVA*m`-G7${N(srN?@BjzvX9BFBY3OLgp1W|vwAPT(U?@EY;0$_tZ-!%MexC=Qk;?`z>;EESfq zs$LwUaj63fgyNjH*NpUH9Lns__Pf9Fj7opP(WxABK-Qt;{j03vj0Q^1c1IMcQwE+# zH_NEm4pSv`I!0NI&T{69)qQ=(slR(;m0a^191u|T^-|RKd#Q+s4e6weN*3~;4II&U zN5v+_IXS4garNr+q_+Y8_DdEf;8>%gB19|8ZL!gxFBYL@uIf1tYh|pi+1VRZjh6DvPZvXml~4>3diRZS7aa7Qs?yi z22D4P+G+oX*H6BB3a$oup%ysw75dI*JBq!+wrJND@6L}2qKCV(t z?OdOb3>Dg|j`C1If%UQCG|f4&pOuE3Dg^!(9YMG4>;(lnWL6Upi}p8+CJ>=s6a16Q z`4$3#7RZKX<7PFY1MYN04}?GJiZ2MUGwcLWN(E6GEtPiNW$;V(_r4`d_j5o+4Yw#8 zLZO9MnKluEz^H71G1K!d$6%Bo!s^YKXX%?t#HWgl9FoAQQ3yPvlKw&Jg*q5&0F(bW zr~x$5dy)9ruOQ35FPZ?FNKpuWF???AKuDbo(sIcIv}%zDJ8a1dvqs99-bRi)5JWSl z6h3I4S3q3bfg(lWIzfgZv!r-y_V=E?w!nSgy~0NN^g#PYl(3hlnSFI?B)w^(s1&^> zsf#-t7+jGxQHWIXcbur{L^p#if!%B#ee~cW;7Uo1p5o*&ujE=(0fl=ryy2iCI3hB7 z10>;QS)`mo%_zi7?&>x{nLNL1Z8F+qw*-%R8h$WAo3c0$QeVGA`-aSG((AEG{I)k4 z4I%#x)$8@UD;Bn;>-BG?=XC}z`vFn?;cOA;^din@aog$-Yk6GXKxnDKFkPTf?pyN9 zN|b==!gjX7e&o7uIMTDe1?4n$ud%&?K^&{wJ5%i2!Cj0qg+kkg2^g;`&JXl&hN4lQ zQ}w90&#X(Wn~6$ojk={kdPt9nB_q))veDJEF5x^rlb5imRRISh9T>2^?jbatZiZJi z(x-PHB@l^ur$kRmoNEm1^IEar`G8@@@}g}7qiKj}__A4s1M~ex!TKiyAgbC()}!h9 zj64Ffc(AeC97INc?Wep%2ksrK?TzHfVyh12wge?TRZq!dEsaUw3J8>5@Ao#5=Xt0( zUgGc8`UFD`q$k0lAp~~n#z>`J3Kw^dUJ}uT86TLXwX(Eu95Yd{>f6N|iIuZT*rir! zpXVg-U_<+cV8r*zcfpJsZloHl^cbK9PLImvn)$5 z@-DwMjS!oDo{zAmXaH~qV@UTzRO@*$fnclCZK}&ZL+A!y$nyxV8h}O`| za?F?_yPggsHEnMpLUSK(9s;6{$Y>+@gMv1lk;H#4ITj=7C73BdMd4XgIMOTJHDTY| z7kfO*I>uhLeCg~%vDV+Mb!5jRtz=sn(Tg2Dbj4n*wVhs@(XdAi@!_~`ux+mM7ydsA z+&`*v;Qp_DorAHy(f`~O3Y@i_I{XC1{~WykUGTrs5&r9gqQd3j6#vu?Ua_{nQ518O zyAVi5@P`2X!+_||1^-=uXZ#O8$$O51=ziQu|Ucd zGmQo+Pz5I>C376~ggF8R82{C@gpkT%$f1Tpz~(yy&&#%Ct#>Y(cO+apmAP-xpctJn zdL3!P18mQm3ASLWS7q8-UIxH`nL*RFe$Au0k<3%`r4|b{%x=G+lQHzB>wO z+IOhD3A#k)@2CWjn*WErcWTci?AkSB+qRv|*tTukb~0nzwr$(CZQGpbyuEsLf2;Ki zzGtJhp5v&ky6dblE@bEXTQQg2GG4UGj*U7Y7BFK7kP$EGqk~9#h~p1S!utx^1SQ;+ z{e{Cdo1;tF*tQ!R6g8y}S0Itv5cEB~X6c9J;l}7G239CbL-EXDLLV$Hw zX_NmmIi8W|BU#vH4Zh_$aHFA~2{$vNTB(xj)!_5x0kf9QDD+w*-_}W*tR?{Z>fCOpOoMzHOw3325 ztj$W$-WK#?4s~dO-GePNx`_Ag&e8M!?_wCX3r9yUmW=JNRH>~aWU_KR@qYTvQn1jB zA)_k*e+G`nUFfips zF#}zC$eG9yDWa4?`}3dZypL+ts%0caJ!wk06dyv`i!>#?@Q8&J;o~67wd2L_sfZzz zz|oi?IJb0rA|$&SCvR$JqcO2;oH^Vk?S}7O2qS%IaRbat4Cw>B<*+EwVhSDmz`;IC zs_Z#jb!iadM z`b_(*4{3}OM%gQa8_*CTim~hJM}YAnDk1XNbJjLBC401?45`6x4Oz7h&Bc1&UG!0Scf;WDraW zNS)gm#$1#Uk`*;K4H96Tw=T;|wbM0|+A)z~pzY^u0gto3#T(tE%U{|K8F?!ShVxhaD_x z1y8(PQ?m~FSqtH7KLEY!#cg}o`S^Cd`iqD{xKQC&2S{%XB(=R6bn({#BY|1sz>i~W zERqWs>)22p;v_tjI%MD~NrhqJvpe#=+tju;$zHe0aV#m8m>8hotRX zQ}5i~u)hG(%wBE|l;4E|vooiru4lNpxc+p${IhNK{r;E@^-=KV_Uy?c@0B1a;1e4X zjKZnEh5&D%HdKq^uD_1If;eDAggnIbSl5Z3ADE0yx-wEHXi7e}v77~^* z&ER&d!QmhesIGyhafzc@3O6;k-wK8EL-Rw1h&kK#hu)3Vb|45UijQH}r=Si3%@Wgw z-O7O$A3+YKyFaNe$$xjWNp%? zI`acgjbn0m?Ks6$f)0#U-&1`fas|=Q)U4^LJAXDaJsqCsB>Vr)K>HuCErd#kCJ zg(0Do)?gPFr1-aU0tVaw4N40Swjf?!;{A}iJPmnbyz*gFZ{{PE31;j}lsrffF`b7L zhxWrzMB6$_d@MM3OD-8O&ymTRhA*NJw0k}j6sTohDPTm8R{WQe^^Wl9{D*9jQzP1? zG1IsG$9l=umb%*D{s((hfqL|ydy}nD1Mk4Y>WJKxrg{B__;`2+WMXv8rmN4z=8*8xg&+@?INO_*dz!i`%#_7-$II4qBIC?Q+Uv{KWv zQgbwVlg!GDM)hO>?pZEpHz{kY^LLeia*JGOi-=gCDmv!UA@GPQh-=1+lT)DEMp3LX zkxSBMwycwlvnA?d7TF-83F)Nxr9f85$;fEd3agZu!M`xt;r*Bh4}zEFI4mH1LqOM6 zN4spD4*+{kMi8RZe8zQJj4qhQn%gS&)VI#7u7hOnWRhwo34ZH@D~>7q$F0MiPBkIv z{v|{W2H2pkv%ws*S@amjRNp%~v@klPu0T*CihfCt5V3s7V|h|4XqgPq+QVbiI5vJ= z&~~T?)Ai<~aZEEj-knC~sI^(Px|4yD=ma(HyVSpeN9g^n=we?qLx04iYa@tbu(yqG zc(}=P+S!BP?D->av%Xh{fMcL(UZ?`a^Gq;=k;`w$5O;-%dVF9q8Ek9uoV(fg-WJ1M zW2Xi{cR_6N?_H01Qm_wNc%ZIvi_yDc*>!;50ggDwu*N(+0%VZ7`4q-xps-jG)Jk!@ z@;E5*bW!-){ETpsQ~0#&cM14LY2)BUXdJIQ{L6#Nc{6b*{GU~eK1*_AM%?g{w2q)- zsB`({p4ZUOiTxib(cO_^lB(AV1a-x8Q|Y?W$RrXa`##aY&^bIfmy*@8$Xt$7jC6J= z=IbB#T-O8M5Ssie^17ca3S<;?8CLdG=k8Nup?9gF@ip?d(XD>s{&+XedH&H%?VzkJ z81-FZ#)&pE(c0z@Hccqc>hz;^7Y?HXZ@@9D>{wDop6Mu>O}2GViyNN#fv9BJ$xc=x za$JMmE>Oa@^Y_XXx2^r%cTR5XZeAJ zJ4l5cyYWc}Y{{oiE$-(>wCvOX%&AUpmgYu4Y1#Q#k{@L$RL|2#c^ z`FhiKQxribp(Cxqgu@|WL}s(?OvYS^OGdj8;@}DGNCEV$Kp+|nTT^@dQocyKMv>e; z2dBxG;$s2+{O5`71MoUaBOwKt4>ZC$+AL%;z41?DqtWfI>*alQFaER0{r%Y|tj{Bt zFwuvLFwM{yB3Fz(K_`*x@E9@|-gu6D3lmBA?? zA?arZNF>FYbVa~OCt;#)LP~ncoxZi}$JCGbM<vqX{a}glgiPL~xgid>GOmlmgK4fY zPqxMRFG>@K>=8=x>#olc9)Pl=$VUPUIntwwuu8wXv)m{q-JMHi*aw{sURc_&wpt&P}`9Lw_zQOK4r^VIzE)DpYa zJhLjhQ8N{^bB^!zIc05Yb-#VPR7W`Ue4o^!&c zXHgqFTXUEjebQdId7LT23!yZ>-6t|~bLE0!Dz~nfeM^OrURW2lobXNsji58-Q-4JS zWbJ$iAxS%A#MsT?g(|AEr}030KiA}xw)Ut}(IUAR$WY2;*B}J@ocDGA8;j^y$@dmu zL2xG`_rmS9YG2e23xaQyc}CGMwniq1T$S|dfs!E)r&7=`SEO-Aho=kd0e@r@cS&%Y ziYuMta|jC>|Ckzr==BN6s-xag{}4gnb)tv#u5-tI7`7Yaz8^Mtc@R`6);RqwhCT$1 zzPf-|V|}0KbQj}3Ht#>IYl1M`1QTdZz1)O!Z;f=%&15~$hAV2m$9_OFhwGO6%holyBR8z+A4?igWqq8XivwqGe)rK)nD~ z4a8p9DVlk()^8lBB|NIfYXhOXjv!CI;nPfx<1}rDrfDa6saSj5{j?U#2_tr>zAnlx zpPz0_b$X+Z4R|0797MCazNl+iiM}(X&@0b5s!SNE=?=5WGP5+nao@(YO;AXMH$W-d zeC@2;-2cnia`cOt-hpm?O|@kg`ZeFL!?IZHK#Cjv(lHC>f{lqV9mfFCQ{L_` z-wF9`%eQx1lhXKn!m0HE=A*^cr5 zPT1D}(P~YrPTL-`BJ_Mxg3SoH?z8i4qg6u#yEHRk4mq{}`K~VF<2m>ui1&&J{s&9Saf>?aJUVHP%;qF zm`M=URWvUt^hrgX^X`u&aZ=FY4P#T5P$L7&=B`3e@`V138bNaK6hSZon4v)FA=A)O zK-`dT4q3n?f&t;x6uuG&A=X_FL_S$cA{+TnlB&ZxeA{!-wwbBT1{bF$4Vuo)xNC9_ z9%*|aM+Z($cI?P$sPLMQtx3R$-$-owT+)RxC^soDVJ^aC5Iw)eo>H`NKsm#0lV!0eBizPRzAjU2%BAvt=-=C-iIec z2WC#}{sq=djc9Es+h8SPHJv_#Cp;gVSS^LZARGnND4`!lL5y|H`jy-*aid9m(s14$2ZrygUK5|kqlrX zK`1HpDg7ij@}Xnu^8O2$Y-{jUB_oiWNAG=t$r77EC{2$`^><&!}Mc!xzdrwVzyp#fVfTyk;R6GTl9Q8xkL zB0l4awr2f4rH)5g^y&SvGy>~-Ua2n^H}Qtynt7)Ai4@?@rRG`!!-5q$cSHJ}5hcEc z`Bi-n)#P6+EJ+#2=uuPztpaiJ32U~iAe#^h&I-#N<)j?ezN;*`_SiFNh`HjH>X8lG zFgI5JNV_HdA|kMZ!rUU%ZITMEn5JnSk?pYOJ3prt`)EZ?okGf?%t9DsvDy9p`hFkQ z?*2taYj2VK`97s@+5l#0q=}I-LuESc%sk+RHAen;sJQJ%7lnFUzQ4a`g(5>`+{$+E zL920}RXRB0dwfp6zF%7e_E5Z8NU2Iv!M!sMf&2J^`4;%uM6puK6K9fhHR4)xQ^Y+7 zx1?#Rm%c%u{PmGTW?$~_mTJxij@GaiYMZ1mGe>DvezVidm`1ZMBJr|SfA}SYk1>1M zySa%UZhdEOxe??A_V}vgy51~GCnMe%yeMY%pW}r8gEsJ>pR$O!E%@yp{X9O`%_1F= znsqF#3zB14&&vrU5PA8yZR0~bb_6B5K#XiVe!f5nOsBDqKw>Es5b=@EIoYmgR_SHw zgxy$gCp$iMzt-TNc{e#%tC{%_$y?gLw&7(~YBk>AS=)igrR{EItW+lv+|+ETOx1nh z=&+JP_SueG+7f7=-|AT6_eb~G#%S7z=Tu+aZMVJb&``M3^pC(6;^v*igZOD6=Njm) z@I|tiOuYIHidFX^Idv-suuF6`r|%uSrM9Rf8<5mTQgL~BOBiAXemJNkBZ&X13}enbXI9Z*1!7dcx&odXm-l z*HyDSvzHGi;^A=N75W3MH7w|fT7*WJXgCK2se#x~jHG7GNy0Ta#gIfq9hp9e9qnMW zI|JgweptQ}4;TdQ5>$XA~G4uc4{(AGk=CydhzJJd z9n`=+$hC40B;E+QR}I}DFg*k!bBcN0vA97S@t^H1Z~~_|p0LGGAA&msE&$;1D*s(V z4lYO7_ZXs>AVovcL0G;u0-8OY1B-nq908^p4p*O&V7sPaZ6%TnMCl}cT z)1WDcJFsA51c1RYh~z(TzPl@6c)0$i3WRDVir<<#N0p#!$#t}I`m3738&=Y-?99%~ zl$$88jbW^zLDS=6$_1~hV{R|Z`c&wj0cbN!@6ra1(aYj~jw-uWH%P7kEE}7YT>3`` z2P?Y$KO7KHK30irFB>JkNJFcvi$o73*kGTQNNK>0l7>iA%K7+}>ZK)t zykp8)-&Ia5B(>TVg;7CC(T@bMjX_r~=JE|wedoUVA>b8ZITmP`kys-2tTJi1(qhC1 zv)Ol+x&O|%J=_N9oK>?nSeHT~EQz6g_(TJ8Lv+pZHamoi3ldzB;2g;o1E>*uv z3k26EohP@g4> zTui=xm$!#nL505!nlBAurhT8{*s)ZOdS6EQ2S0YrHLbYNd}^}J&cg(bcJGCoGO0{~ z`EmZKn}d>f_(Z0VeQO84aKL(4fiv5OxpQ6ZJKKf_&rU9YA?leVEYT)2;hIFYg-q^R z(!4xgA!4!#J~X;!F`m}L-g!ejjl zamqBX2F)0e)#k$-+3syTw}Kx$wBVAL-Qj{bt-rt)fJqDt{#cjFr~c!PKd{_gKo4YN zmjr48I~5^eoZlk}N?`U)@q}XUU_ChQO&pGs^s=9ZT6gWTW{*ykrfQSk^DYNBgO3O8 zfsK0*r$z1r_{{Ve%ylxQ^&gnAHyJs?q;_O^Ba&J*|!JLmfCQnrW# zh%bT+cYOS4yddph4WK|l|6Jl?0Xv|yDhG&a5$&D^r4Go!^Q)919xI9Q*v3A`llGm! zq1QTW_oz&;Xo)XDp>ACs9{IYO}OCb&m*+cBqURW)hz+ zm++k2uhBQ(1g!Lb4Q>L*6q*Szg*Wr8h;lM4YNK!Uv?#@+a2l(am~GZC%;>4x(&y9$ z91N)(No zAC-`+9D~tYY*JAqoOrzeM-9$^P)eV_s(CH=MIg@M-1pPvmD^P}5?rM7rh>^NaxFXO zKfjxt9K1b9>>RjtZatFq>9p^+o8vq9x054CqbrY|cKU=&m0{0EUN2YPj|3lldNfM( zpN7Z|&0`VF`bcIIJH$F;JCE^5t)4L19DtbH1ddtB9(|XVJ4zwu$QccIK+cAW#UEn*wppu|m|Kk$wJJJ}JaNeu={z@Iw$scAQcU^Yog#^>X^u^@ z<%o`WaX*+Bw{W7~8biMrKwn@vDdd=8RKzF~6_w2U#nR1d)`;*m3VPd|5}-QokL}7+ zdR@I9450p{qfwe;lX0kj`La+L7tcJAZ2Ys_Jz!Le?voDz!)&0T9aLhTts;tmo#0hd zsmrW%?D`rcCMqPWzx97o3gAYpfPOj-Bb?}|SIZ`$K28qr7mfhzzMjuFa(2GnqrM&P zpDzc`ooe)S>zS=r@0qK+J)W-@(^l@D<8-<|+26;@mv-P$z?FH}zO9sTz64AHtP4x^ zQZuwbDeVMhTX!A}(kBcxS0yoa?49Fw9`XJ5Ya!^DMML8>{#~H@5{WK~!>HZ&V5r$y zG?CuZri~^#%b>Z_aeiH8>fSmhlrYX@IiPDH#> z4q0QKz$(eTry39ReXi4ymL>Qa+Dz~K+MFEer4Hed5S=%WP#=fLNs=FC{i%JmBvKXY zRca5;8~_G0DUf3erl_gj3)N6@_cs6pc4m)VGZo_y7f|}^Fee`ATQVIw;fPYDi}Shk z5t$9;{etYHQT73STO*VQ2hh+E3TNozO3c6`ir7gJ;e7*S$YkM8`Pi<~G`7O@m&`t; zR9>p3tsFG9m>2%x`h88*x;6)v%iRI@r;W_J4~DE_Ef8sEA!^+q!S?GE4MI42qho(518C-1XZzPc?EYeX-SSGoxMRE7A+N0-pW|@3}p$=C_ zhbtaM6dGbs-m1c=jrg9&Ne_6ZWHV;Uh8Fr~nAmU{PzJ`|0NM2Z08KRqizd&I z(IY#9@Zu_s+pVxq=0=H2qeoowa!aLUT|Amylc+GZ1z3jVilfb4wkV;gst0X{6xvd-o(9r~!eIt3e~QTAEh8Vv>iK!Depbld`uv_k?*txzQU`4?00G z?N_ks^)?n18wl0obtOJ?!wtO0a+MS7#jgVq703T_c%q zc(cBQ@4I5~T^JZ>Bk1zDG?*pC!nH%uWpgmgoqA-nB#0aqiAHtu|V>NegSJ??eWsLPb`2 z>dU27r|jL`Kkd_RknA8q-9gaJFbG$SJ`8nYkAya&g(8&a6#(_j5H!%3jiGzv2Z`@$ z_|{0VjQuU^jmL1FiZ`FhkkB|1C%uEpQm4_QR!BUm+e<2kipc_Lox1Iq2ImHyCuYQ~ zukSJp&X92+Bt+fS)Qu!hTVm!9h?VxzoxM%Yt-~G@K-Sm%nL#ibW%XfQX|0HDU(f~U zT#e{F`Vz)_gA;iR>;q(l9lQ5~gH3Bz?6EeDLvtO`c(2%`%EgZu`b{+G#XblS)()*_ z5Y}B4Bw5Jt!!oM=&P|8r-QPl;Q(rJcfg;gK_a}yqn7&UqYPgZsY}EybhW?SoZ1RoA zOtJFvjqQ1v8Q9@4)BF?-QfR+M!SGZzO9fm;yEn%Dy%IZLZ~2aUX)R4U{9qbvJCC?( zdf)YEZ~m(#1!S^N9eMOxq#X?grzGmKvyW}0ax1zp5jPbjUN#0YlY zW2NtpWonXEtY5W-7pUUuBG70^lee_}=;tCd$Z8`rot{O;*U4}+<&ciC(u1JcEcPx8f2^d40{yg z4U!VUJXqEy0s(f1C|&;?ktZump-i;<_tW!_NCE8aP^Uc-USMW&Jh^mVlIBmkTJ=)* z7uY%Sg;?Ak$zOed$=JMKe1)qALSuEuA~}5qjaC9VE)ur^tI>B+?!n+&jhgu1 zX~D7*rLFtsQTD0c_63RKoq>_Q7R@l_!N}lY)rNG3>eSsQ=H>cCi2XI%C#=-*#Q|`W z)#{$+4qOsNQeiaIqU(O!9Na}Wh$wda3kW}cs}`mpO?JC7YY%|dd#0hAiLI#&NOxzd z{%Dp7ohZ=4xzWk~fVNJFST;>K79ME}Jb1;iFuLZ-5vdgs#Q;)f4hDP5lt&xF!T6s;d$)2(?H7JkP*f zY2~y*Wm@rK=(cI4qK{9*s6yc_Oz>8D>I*lXaEpeW+qsIO5g#^yn8<;Fj-zEKWmod% zZ2DW=bP0>ewFGa&*C4a7Hgl@p)0*ZEJyLa>5tG>qXCtfWdg?^Z)#y9rt{^_!ssO|G zXal6+N`g7D3SyCUne@9P7>C4NmYZ)MyDPEdfbM6FTl+&vSH}D3!)~VQTiLWE(%4Id zFDXIign?rch;Ykry{+AAiR)JvqO^I-Wm(#l#J(!rZOwdN_l&;w9pq@Dyz_85HJ}4? zd5N=+nki_*Zmexua2FlM9X$1!LEe+&LAtf$k>cTd3_e&!#Hmz z&+c=qHN)VDh~cQD3UsO3N*0DU>z&9|?b6ej8zs#%2|({J3SOAAL)A{a+(E#LA?bn31g{ z!mdG#6}_7WwkiE_&|BMU$&$Ge!(K{i34hlQ)S$94EaCT}2uJTz7H2N8V>wo@~ ziQRpDcH!P}boyLyhf=@pWWfa2d>}=PXOVDJXCkvB>PHBZ3flKr+fI*Ne5~J;rNW7d z1pI5RDe&~Jb11gJRaQ8cu7g^7PIHu6ptmGNBJ}C34U7%LonSR$>8=cWt*ci8Z~AIl zlC`|bwN5=&2lwfW%!#~sZ4IE0V|dYe#~9-WU3KBy*~$Tg!{S51v5{6WLa40s%@0BwNh=V`hBqyjF7K4h-iN zogc4o(y0Py36x+>c>dmn@}f#e@fG1scXi}F^}jqAt(F_jRzz7)_>kiz}AO%H@z zf3$z94@AjIVAzwi%B-K%B-|jJTLwr)B(MfU5HE|7n8?ZrQ`STHsr~$h{3h%`#)|Um zD7$v2bbWK^*T^tqOZo%L&^8ZtG~S{6=Pd6e?V8Rr9Oaus>yBN8<4z(R@LFWXa6%Rt z(0+m|@LA`GQBvnu5BDUNA|A258FV&184@gfei$`YIq}y;|DH zEwCj!4`*=(s+-r+_YjF80i*0tZcj3c73`PvD=to!%!y0?;p@zf?mpl~zu5~9Eb-W! zk`MxvbzbNZh8oX8PjM#gVb!k1W=qUH#YbwaEX$dvaRm&*I>HE{20)`}leG0!=muq) z(`v31klgflt{EPzk^= zg#-ARtPD!1RFn$p{k=8a@ugjW&TY<3Njp=sN7US2H`A@%5sQ0E5P8U=RTDl2s$Yc? zL#OL#)F!pfMXYNra}=)#mS_lbSRttgMKzBc#z1vXxgdEYKz_(?@%KSH%357Qw0H|t zlYrxN!7z7et2;KBOk7b)_xOSr5KCOSD5&n}KofZfBPvIeqFbG@n7ee+1&SuYT)|bZ zM?8GKnnnNFgW{MiQWFC-D-#1u3kyE>8g>up$|-WAHSuDbWPnsHCnn|c}BB=-QgbtD{H1|US!$l$V7rbtmmkO)klbb3iyP!lc=4{;y za#BP@R({Z3RZvw$;lHr~0venPUNuZl{l3Jw5$B|uV?HCmioOn{F!bG&tD$}{ZJQ}~ ztFu8XcN%%_)_;}ZL~IDbE#>zC^~}Ur19mqO)9v5~VKMLsFuJX|#pboMZoRW>jo&C> zZ=B3)o~F(Xb~JdET8P)0G~hHzJl3`*4u>WWq{yS;2ePuWT&#ns*^7%xWI`S=ylx+a z1lhvOrn$+uFPN9-Y~T98xFdp}rPvyFgRnMSHCh|BgEGZdWSLFie@j)5Qn3zggI#00 zJ9*bzxt_{E1}bs8(|zMt>u2z2mMR1q$d3(C*P+_M{28(xX%=j4c(@W3L5mlXRMN3na-A?tKC(tlw80T z$w1XTJ5i!s@|IewgwKGAQ?<=2oz0B)Tk$n9Q$Fwl9Ab!X+c!NGD_%c`m7i@9X26nTMsk#8BNk!S-uXG{58_0xc1*x!nI%fM zG{*(NwR7z{4XFeP%%-}8KLi#`kKRN_Qj`Hp?pfX{*}*`IQlDs_#o#=ahc zYVWC$%IF_ytC|#?V^S5PQZKRSt@XL#ew4M~m>{BmzzIlwr%r~Ww232|=HK%)BfONK zC}5)X!zl_S6G^!M>=$Ev)m&?`V5=(>ZYq2kuf@G~?`sXiyd{92gsu$WV)mtdJVud^ zu@4kS)0f-?{=Tm%s9A2GOkgcu@2xzks=GTe+w8gjk&GLj{VAIY9q=AIBcx}LL*32V z<>C7K!sLFt8Sy#hHnJKW2C18-RFXhB);Q$J_V;z(bYWt@4k&hXCL^i}lethl5K-&s zQvB;YU-ZxMIEwG#P*Kz zja(u4mPm7QjM#rUI+2<27V~z>m z&(-mW#s2fR@H%3p(|!NxXA7D2I|r+ zv$o5;TNrWu`Y+c(lJLFUt@O>^T(NNwSw0^h!o|&nEcY_gM`@Bv7O$WaYA5ZfYRW?~ z(=ufG*l9(0XD{^<&J^7B3(bQ8%uDr+h85IFyrg!#tJl0M7o?g)rZv=JaFcp)%$0=k zo5oVwOdW&m>+5Ed=3CMGA6kd6U5~vMCU#DAoJsQ2KqHT#CJUO-B3UEIA~_?-5_uyI z-e{~zA;t3J19tZ8jSDj|$!3-dImyZt6khITtjKKL>w90l2$mE%nZ^~Ica=Yzck0x2 z%}W+wp+!x&={;y$S)Q_?F*6f$WMJkxznb;h(porLLCq;;&4ausuzWnf9aR<+R5`Wt z$G}$M>VH@sHFQ2q{i+>Oj?>io?7n|Tw7=K`rlOYmWc2mSd7s9jpCsZFB0E{vknO)} zk`w5Oy1E7FhHmJt-2;0 zv(eZ8UVzQ2EFk-|qxf{zZ050j45s#C$Mk$1Jo*-G>WoRlS2ddRbF&9ZgtR&dTE{!J z$Sk11i*l0rVr=I=(Doh&3zNH>IzcHJ7XK_05K7vE0^zNgg`G2{N~2~aVknSNERjKC z%1@4A1r-?(*rJ8gXfRA|zV#Set|AiNP6&U`4I!5?pm10X2;wqRd`gF7RiLu+32ypZ6m}7e$qlh-7`>RlY#!(qHh;W7#t0-HI-v_EV(0wn zAm@S%F}?Th8)$y;Kzb+AG!Xa1{Naxk?6cn)47pJUQrm*Trg7q8u9C*HF;MLl%9SJRRm+#%&0Dk->ZLluu)ESQlTmt~Wr{2L&4QyYg z;z;)DOCB@7&0jNQTxZoHdCymmEpjdLOte<{Zf@j($rx+^K156B#t)P-=Ah;g>u)24 zDchdwaofK>56N9>m?K?1ka%^1-Kb4@E&bV1+H5L{=WB7v{4OwC3z<38>kdJy#dNV| z)UH80+##XA24lVXx;cr<(~VEMnCt2Yd~DBj&1k92To*HCzYpKo5>OY`MCx1igo8y{ zsgnI4#D6I5DSad4$5Q)F;rIcHY&B=88M0E4Wqu??*h!*fu*1!7DunjA{HcOMb6+Ck zpYgR0E_6XIk1G4Zgf{A8ry^-`{EvjTP87?k~?^|R}c`wY&&r4^}mGMkH z&V}QaRAs#<7&OE)*o+|es`Rpr5ns>X9~bcUJ@+V$;Z$ofHrvPVlctNc>8U$M{YF{v z8fIIwPIi26pHNV6L|W0R>{I!+o7PgKsSZ*{FQ~2sJV$9ru6Wt8Yvq&7PD>+M6-8Vy zn)8vh(VFDjlSv>S*k!CD1s-)*0oAMXN9;0kvj5Qk*NwQN!JGfyuOVxi=l{!SZ1aEZ zON_d;yzI4CHTYg{gf^CqikFQ@-(9YUnh(|*4l%gc{g=WYC}cz$pcD>Ow`*Q?C8)23 zyl#`bWnB%(WUbPBq@?oYHFN&J+E`dvP&V;dib1v`tG{Tko|Ka`5f5wv289W$SwNnzK@m!)r$|K?oFwnRB2rz zmC_L3tT3(g6x5MCa~51qsK`-FRpiW8Zf>f8FOveU;4Pzrz1T{sFj+EHwSg;_8k~@! zrq5rYIfg4sP41{!dQ25fV#E6G2)r;kCn(*5iJ*_BWSbmoD`zOuZCNhvatux9%ils2 zC7WM-_$rI)j#!`4LJH!5oJb8cwIP3!T>fxfgm)3p1lpzU%&A=@Hb+mYu~inLU!zm& z^1xmfLh34hn;IV7IR5xu4J^ib9ovt-rihn{b9$}ZBUT-Xgu6pcmZ~YC$*;gXHr7Kl z=&A#1?2?ScNED^zvc6lWXy@Sfu`5D+IW{XCo6pODdYs{*;)(nf!E_uImD6gupioK3 zNZDwbcNi7iZCofFVqN!0Q(m=M2gFuUs)|=^6fa5_zZ?QU2Igd3yX^Zxf(COD2nmmp zHI^Y?FGDtlOP?aV(n;c|!t$IVCVAIU#AG4a&RRGMiXfX;*S}_5!E2QF`T}24ElOQw z5uE}clkeg%9AU70AQvE-m`a~2@1cxJpRzbclRjx1&pNM6H$$gv9`BJvrphv&0eL~? zP*PaPUJlG;J?F@#OMBwY&S5*CDQQ1oO z`AbnG>|tzq@>+4PS(2r;AI!E<5lXQ4!qeLCU?t{MFOu4xpc@X0>p7uyyUH4bP*$q0 zzOjW&q_Erlyy5Hd>*6M8fOVojnIkChY_d~O@Z%^S0vS5AP`nxG<)d92jvBi-?;}8L zJn%tLZwKPB0=DTcux?3zX4$e$!P5QmxXx2VjxDc_^8I*D>#xIulib%OG`AMg)}RPqQVsZXcyCf}ClZS`*B&3~HBJh`l5WOtTUp1RW`nl9Os0_ljR z1;nZrH_QWP$`(L5@)QAoPLm-6pxKSNmNUFA8nj>sf;F4#7kSrx_q5Nq)|GZXJ}5N= zTTg6Kt)7)MyK^f(lN(b_7SUU3EoKl_%0o!w%LMHpl@~d;Dz6MKACLy208F!))%hZPZYnPmGasVvIpiX*{Sk>{nX z+MFFawbF}s>k51{g96iFcz2_vuTqayI881u{j83~nPhedEj0HP9(!1SBMm2|G*LS0 zy5G=f1UU++^UcvLz*NL>P2~+etz7Qe6gkMR1hEZ%&OX)C$G`;(Af)&h)P@Q2&mXgF z_2B%Pos~sS{P6ts?+JjOgxl1;pJEzFOP01EP0|F)aYFtr=0W~b9#H%gk!`3vyc=o!uZn-d3RwF3bW5N_g`zi$|PE+PDtIU)W)pvA)QvWq{1IQ?k{kFM4V9o$A zNV;#&IEPMA{oTBPDQ_)RaZ`5@Q+88!ajM`d={RJ6%Qom6cgjWt7<0;2@cX^s#2vQJ zVC3z!&#)uxwVzh45GqPu7bmGXO8zBC=SC>B?RC72z(KkJAdv+S$w}R|_2I8>N;$TZ zt`zaawJ_z(>?6M7R+H=+pK9_G5y)X6Q=t z#0gN9P>vxyLnfcMIojbr2$K+X_|OZ6@^iLY12E1s{)JpHZ|F$ z*Q4fzD`qrthG<=Z37%3u2AIMDy)^M+i6gli&?IHPBMNq}2J?h`8AnvQ4xX;lUQ8UQ zNt8WXZe15{Fj}VcWQd8>6!~)9Lcr!XeSYGf)S747)|gX;S0u=V*PM%!IdX^#2-n9h4?NoB2_(t0hnA&)uLY!#hL3a z9>dnR2w>Ttn_ME=vJCUQOW6FIhTWwXS$W%%XWsa90~l&t{sO`hHiEL}XP;ys>wkh_ zpZkLg&D`kxX3?S50@VXOe%w%+diIcrrDbu9-z=|Uk7o#pdNojcWLCXWWBJ`pIw;DA z_K9iC2ld_5V~BDJn5$a7Cpa*qpL`e%4~ zWz0CN&NwZN1ePBtC|T_14nM}xV`RyNr4M!;6#(@04~W;D4eI;E%f~p8uzi0zyxAx#Jl`s$O|Vj*^WzE~R2$eA?sGaGE#>X%NJ}?L+3HEw372wxxha zbq)J)wMTs@NJOP|NY)H4mQ-MbqkVBXmRg$k(TW?!(k=UJBhfP)EqgjiEF-PB+_p{L zP8h7}ifiA+hz>!JMU`3j0Q}UqLniY;M_G2f5R;3He(R)K_ZWy!N%hW?t<$p==n?qc z#88nrvX%&CRV^<_=Rl-t4k}r4KVz??A?)cnjmimO=W6Jg`oez3Q^~qMh-artY4Az$ zU1muV+poy@f8Zn*AIr~*ON5tm4sD|`M`<6^W2Cww@?B^a0=5L~NWjRFw#w}oAVj`J z!$v*3OR{a#rp*c}M`4Bvd^0LcCiWFMgZ4DcJQY_k?s>miQ)D0UCNaoR12w-jHx$^7j)m%eh;+0EY@tTpd73k@O_UZ|Z@##ujGnHjNwM~$2iD&xYo$X6WI>fFMQv@= zefmp};S^xPb~j^Osxx3W<@V)@yaQh~kpY$12Jx1-L+*yIx9o<@ zi}u!rb_UTXyG8JhteO${8bul?f;4Gp2x)H*vzoF@f}*3HhPQ%9yhWOF&_BFJ zy9`tYq-cFRMQZF~PVY@LEB;bM#hPi99aCw|iSLl(X8OUs{f5&CHB-LLZxX7$95d zHGNMj^6!Wu1Tp0`Ria|tnz$823fq$cUuu1p4$Ecqe-b(g69^>m#R3bn3tM4Jxd^ru z4SU{(p9`4d6pdMt=go}J%wyS2Vo2Dq1Io#%TjQ63>z?(P3NN5%_C@|g$g~7{tgTK- zjTDePVl>KWaPzEltNYArb6zF_s0anqG5W!{yt{$rN!)6I2 zAQ0f_Lj2gg`i@i=tgKcH3LYbG+Q=RVFLX-E@d||Q__Y6t0Vc;4eVzHLVzXhdo9}`M z))|5K*i{(vTdC3(_&6Hr)BuZN_{PcFr%R>5)i=9X_T86vYjP4-XKO64H(IsN5@CzC z9Q-3z9}3h8kAH2NWV|)i_~HsA*Ya{Cl*ouOvPkbBtkh_{8nsaoO|rpYT$m9$mN#Xl z(s+ht#_&$JVqKDJrCCk=zyfPkt5NT=hBW&~X{8ysO0RyPnX=_ysD-%@u`J7l)NL)9 zIhT~#<5F@X#%^Y3>16YGky?&mfo{7}ImhuheV&FNO|1%vC`SF-*iST#|5zZ6Bg=jM z;4<;LA7;!EKkG#pe#5_?^&@C9GZb&V-7oydDoB6C6yLBfk0d#!B_xR9o zY@8TBF)1b$b&!!5VoS}K1zZ(@y|h?uN`yMEHA%fcx5ewY@H^&Vy019|+GZ0&RY^NW zvZLd0h$&|wGKQV{CtP|GE5*c^C2j*R*!Ny&2B-eMEhDyjHiDjlY=-a|8*Y@=01&IW zf(T2WTHgh&yXCH0saG$8UU5IX6a$`;SQ`TogC4L@rboq{43B+Y}Xnn)bwx!&Fl zN&y*Ih1*dMWdt#TYCpM(WQ3t2X0rVRW*Z1{tsQREOR_R@yX*f6`J5h6-4TSQ2=j`p zN&jq1xK>%!e-mgpUzDX-9@0|6A`U}e3s3OHIK(q zOVWQ@2N?|Nw!Y~VfK2-yanBvx^AmY(`pC;wcyMo4hw+$FAw}nV<9hN*-bisi_}6<> zSRU)Q`YP57{YSNrvBW9|W%yYD9vcCScf=@#!`wmO2Qw6_*R){9d>!-C{4A6GLP{sD zke-eUVdILV`3Xp{tf@?0 zCcXE_)1I4+9DWQ<6^u&$J6-XdHZ4HI@!oDa>PxpaAMTCh7xFylF8AYy`{)AV*{cYa z9q?;u?%}N`GhPJnDe;aXsb_j{=}sQ0%8lQ1M_UC9?Don8!Y zFkhxyO!;q;9@gCp%WZ7A+Zm$Jb7Kt|dca(MB13e+4IF}I`!vE6YY6ex3t{ojPa6^A z=APvj@8I3=JJZg-ds#ci0vs%yMPI)0s0}9fH57&I;!K6s&^*m6&tc$?L0Yxg1-edH zQp@}!_6)qub(O$_g9-T4YX(*{t9HNI&XxSN8y=C;mcW&rQC^K{Sotmk6>tr}c zw(G=Tyh`6;GrThqP2@F{`4oP?FnKHIH57sb2M^f+ZR<8~qDifvHj}vE44Xz*!0|Pl zm!rj+G(u0zg>}9+lpmYzEU`V}G9{#drqx&6r>|Ow;=lMXI=ncsL$wv+HbV6)w`~3P zBzPW$f2g{Bq=z#yHA`8 z`dkIEu0ml{zeiOH&C4{j>YG=ZafcdU0o*?}=^@i1kfLi<=TwIA$kCnp(5dJ)TRwx` z!d=w)B8eQ*l(p4m@f*;ps+sz6maQ#o^m|4mA3;|5LJEeTV0qxSKIu{BLdlr?kEr>m zvg&-c-wFzl2Y*yLvVyCJE!Po+wn!(| zYjroayuzn;kN^l)P8ryGoL5xw?}NSFjP(cG^@m89DyfPeXY;sM#0no%(U63)s`S(rUToVpluPopV|JmH4K8Um0B z!gqBr7F(v;8f4ee1MOMhB(cn^%J58#C@o{#*Hwb1iy1HcmAA&D9j5MZmF}%*-Xy`U z&OIbA&^)!e&Q7&ocK6B1WG+pn4*9 zWxd0OVo@GEbK`?vpP|jY?+}rF(1DeA2rIsEx!3(Y$pbkR???&YWPo!0V>1}cRj$gI zsoyoD2vz5vNT|<1cb}>5q!9?~ilh`_5SgP0+4&xW9Uh{3Lw3`VeenA0h+co0eR6*C z2tRHX|GF1nQ zv01qP1?C^UtK;!V_gT&M12Qup7^wYj53=DzOY6T7DJP@jf8ZnHs&?7F_nPH+gT62P z5wYbF`YNhVn1yqk+#m^NuDD_K>F=wv90t#es#X6sRQ&ahL1#NBdKrtT(`R&tIp!#L zE0BR{k&W?`G9qLAYuS^~{BEnh2BxqNLqo$*tM#dgDx0H(9)~MXCwF+srJkGAIm&?( z!V8h}(R){I7AIANc`!}K0j1ehq~l3)mm( zwMvG%soT?!CZ9UA4tN1+tfYZ&3B}ZTCQq2gJl4h?xtexrn#3_Q%vC0?X~nl zYu5F$zru8)AASk(d5<2b(q1S%K?sth6sosYt8PhP9a=+X`S?8wnDh6t2nAWOTwpdY zRJsWYZu0K>q_B>C%ne=B2iYcZ8`TL0Y=x`0Y@GD}z_E-v-JiGfJ`(l%iXG(Emi1h+L;w;k4zjO=Ib z*KW;3GV>2B6X@{<*U&fXI-RKMHvJ&x%~zbX`ba4pfGk6)nj`y)>QTIwijSJciYd_? zfPD07B*2l|U7B>fXle^Uo>v~YDU^Sw0OrUt&n#kA(BGfFl;amCCE+F28~Q0->ERju z*cMlMB&E1B)l2;#bL@CcnpyPozirFP{A*ICm)d1T{@a$tMEUP#ga4JvwPnA-fz~st zipPc72stX>-W}21csPp`58EP1CCL=oepqv2|nK=A8%c9gVM& zL@(ovi-yG{7vMkk@RDPoGU|B01|7n(Z_FHm`7oJWcR4f145T~eTJ>sdm5=+pJGb_> za!VRp7;?13G&7|_!yn-EFFU|&(Q%qh^@R=x55FkxgwIr@35o@o8QeTlgc|;?EdOzj zvXm_ygaCdf-v*lpykg-4g5A~(g0>T!7~V9i0H&7s*fPgXBn@X5WUg*LL=~Au)1}GP z9EKbUR3Dw@FsEQlK2dP^m+ld$HJ;%IU95C?S=q&tmk|DHpjz|-nZ;t+EG4F5SyLG$ z)W7e61igTR=AG;mTDxr*SQ=D6IV3PoID#BchZFN_R&WUv`V2Pd0{tK=}Oc!_f zhUEafN-X@JJC8|MO~`^Tc)S{PC)Ofai_i`5XDUyxJ7aM2?&-;sCyy_ue~DdJS3Xbf zIJt_tmcfY67ko#tRPnu!NzF3MPQ~nwRLXwvR0WcCgb%1;3ivD~l<%1Mog4#Ok4baP zyA-SwlvWp9hm42DQ>oYyB7J$rXIOZSI!FkTFpRtUc73b=r_G9U`*J zltO25RxC(Sy>*a)^LDb5`9RD}Vkr`B|Jbk(D@>3`kuOiq%=M2Z{bQ~%VVMh*0%hrL zE`>T~G#^Ekahnk{Jk-k2_$pVtGd&ZIFtGh>4sQfq7nG}uhkcNDB)YVUby~mOPE%VU zZs8hk5)(5`2d%f;vs98;Z6--UtRe%GCes2uA57R~5=GXNj}@r_YyS=lI}Ae;S!ViV zpT%GhX~Avti4NqV1PfWKFiES6QSZ|6ZFWpWjhll}TJ8$(zfrQ0@+7)Ms5k*bS73Rm zO1*wvTAQ9gl+1HQSCUBB){ocuO*wSBm`O}R6eMeVfX_9V=Vm#1uYUA7 zs+D;}cBgl2+?Jg>+WJX*0?Jxcy;_*8UgEmLa?7+Zjv zCDZ}H_yy}&L$NmOdWM7*l&4=gl=cscP5W$}IJ;_EDwlxD?b|WVqwm&wJO$fA`UxMu?@HAzxE&+xyvQ%t>N=Y+LfP@fG>B=7?l~ofNx3R<`n# zDm``Do!ZGHI9=%!v#=@&ilFt|dX#OYdfX4|s#JAl)`*)NED(=6v%=Xc*(04?cl=iY zTdy1bium|DJ~ru!pJS$=V?3*|Wqw=t@X>2;{|)s$@Ed{HWd{wV<%d?1tL6F5Bf7}X zDc(1kxm{oxz)Ur#=$gIontlJ@8?ds1e7CC9HQTX#+Yt_Y^63R9$Ei`!IERdHLr-qljSp)ufxWFICFyo_$ht~yGT8rgp)q0si(=y8m+=TYiQ-l`L-cEn5iB0L zR}XL;Jc&#nKv)!L>{18B5ccRW4cZ_w+~mzs?$zwp#%xa`qXMdTLN3)}`970&ZPmo|0Sx|+s4nzo8hpq)@&`x# z8yrQlhV$>#6*VjQ*bW}2gSTqvJ^ui$5A~zzj8$BdWHEg62|zyaF?0E0D|0zPfZX>n zro~h=4q8yf2}Kq*5)^D#@<851C@KkyfMQdp8SJ?^jGG0k+d6l(F~(qxOl=8C;b^s4 zT+8Q__RJR|eGIq{X`TzgWD~T7^WJBKjyzZQdS?KHk2v`$_*kc8TQnuuoMAb<8iC|sk6Lhh zQ)c51OT3DUX+mhEhobYlBhrzPpt8`Rcbs#=2!7-6v&GhE@`b;}m7-C9p~u~&CV;K@e;j;E3TxR`ZCo~wNo z8O-ATZmLuAK9VK1MZvAWVp_KQV5QE2dS)(x*pZWdVQW3E-ODWg z3)gx(b@io=2z_DX5)=8g_bwxVwM>TbqL z!YU`-W{u!`=>r#Y2fd5IhmFhJR42 zR>~fanP((9WB7e9DDn`KuYDPP`>}JZ84CatY{fp>zYgQ267aK1n>Z}7B!E*1;oi(W zl#Ss%j!Yj=dWJ>iJyp-FavTZtLaZlxe%r+LvOe;k92Rj`jqy>=0%S>M0gpjYm(^94 z*~=8LoD_BSRn{vPh$3d6*EEWVsHv@&o60YP3-=gHK^Jj&PjA?2>8yDdklRZxHv|~l zc3M-nPi?~*=jzb8LD<1{h7)7WmtJmo3mlGM?fIQ6yI2YB8hcpI)8e1)fVbRdQ$=x_ zJJ&z$ga=2GMCrm9LIS{VY`w&Xd+22-974s9&uhy(Y{qpVktxai0a<<$hZ_CURpfri z`?2KijFBFAyw;|KHHwj(9NLlmkNW$NHXntaBMpHgsUpNECJ-=r|7KZ>jQGvou8rQm zPC4l*TT;CN@QYb|B-5rx_zoKPAzek4?U*@6wRG24PI(djrQ&){4n)>%LiRzMz=4eR zxQ8wYjE<3qul31QzxN^k;9oTDcfbodCis3%V{DkQI60;|`hzNB*4dOtWk682{i5FN zxPZjpiu?%vpxLR)+68(b|KY*P@EWiLGEA2>IDAU2Fk9Q>N|L2iu@TXxa-#!A78IG6 zo++mAJvlS4+CZ-|#vU{{!om*vs2P)C^T4Gr1@A-c$OE;T`Kt)|l+P{TBG=LtH~u`A zR6i@dGgCYhfkyr}MG%u~tE*3+W`=)XBqx1pvXFbTqq#i3%&D==d7(($322&pJN?ZB zkcV3n=C{{f-zaK3k)_(snYp%G>aaMh+Vxk0{;W`U?f9hpY$)MUCCgs@*~DK8zRWfK z9y*weK?zHP2unvH^8qq?@$-Rx;o zpE{LRvAsCCUR_bU-cmYZFFOTBI1kic;Ow%(Drnr69_q|T@^2h@?d0eGEh+f_ zW~z|>KgG<=)ymf8zr$@xlVUD={ChP0-$nL6JK}!;9f7EjrJ0_Ro>P<=r(>9#9G{}C z`CC)Z6wS#xrzo$u!YCytJuXczH8sA(C?hW?O+U{_KR!jh93MYBHAxp4zd~D1w+Dn{ zoSdDfl9g-?*;t8X%JzRjRv@uLs4<{`fCB%yHL3oa7dQS7{)m;m#eareOl#RW9B`m~ zUmGx=_;7g_akNit5J|DyF^C7Rj!}M(Wa(zJ7JpQAP=;`yxHuS78MT9#t=YFCJG?7Vn ze8Dc%^vssv^s~wDr9q)@Iu9R_DoS*trraqH@u~6!+NC){zY}D_U>u}xK=1D8(j;0q zGUE&eK)u^n3Hn5%*s;>t&Lg;Uxh^^v{y!K$`e z?=!AaizfB$MoX5}=>wsjFTku*m`1%J%n(>ZKFXhy+`~)FHh>>6q2V=3CP^Ksq#bpn z?roU5UN9{W5)y6pH*aRwYdPFs-eRQ*$n4Y0_hq4s(c|{w@!8$W#pBBlBF}zrt1O$a z?xt37Yj*)MWBU_A&|v2i3rMp37VBG0YMw9^4Xnrse~Rk`P4h^d_}8swwOEY1*#*6h zi{?qZuDK-wny!5ai3N=sqcC;FD%5nd7B`di;>F8HFVho}P~e>yN&;+}+~~_I)40?9&q)^M@$Y>oK_d>Eu^0(!ST z;~p&>!4ngcmpG5V&=#m`v3Z4WR046pDBc%7^&KJHnFpc89$CQJ$LyXsP_LYYV0ijq z6~QnDw)oBh8M85beUIh1@+91S4Fa5WN+Y@A)(we+rnrsjvhnGwOiO}WPx*>es&z@i8w-m> zSj3T3p~pk)8_s3FMM*AK(O5ugf=n=R{%#&=F>L3*wU-Ayt_Dac{bITiDyhYO4yWqaRzLjY*wwKOIdqc`7>2fZNYJYZUL)58tipmk` zegW34{y5`!MX8Y;gW!a2H6UakcZ_&E{Vp+uveB5zmShKK;Nxg${3F=s$@aF4DV@hP z%M@(a(blhOiW@(Ye%pQYEpTZl$gGJ+N7~hL?m($-pInxyR(N z&S7iDMEl-^mS?&bkpxMc+rTVOd* zq&Qybdf@@Nr^XDfUy@d6jB)c=wsFW>A#)$Y>e>7FDpdHSjC-E&^aIww2=aoBD@6(t z^~af3^t%XK(fCjZ@`v0_zH^l{#EOq_vkM}-l1A$tbH z{%)ukx%zRMBei$gs(90*unVMf4ioAWtr+rNE`vC5$)s?Wk&^y%(heZ{;?xS3ZZF=( zBPw`)mN0B4XA*v9z{gX%bGH+Ys{{QE(F=A1=v33i0;6h5#1Sjw&;zP%nXjGV_r=!2 z;M9TKuG5g|f#atVq(ep#>CJNx+E+BJVrAF_PN^7|6ST<#1UP2yE-Zhz3FRE>*cfYx z#_bA-1046MDTPI;)sOfC3G3l2>Cf?Er-*`^vM`_Z+g~~NhtX6O;f*r+eL!#?Y(;KY ztgf4+`wTdP^P9$u_dJM9{ZFedkg}a@+fgC4P)TGlGA5U#&=&7ZIBbfw3A;w5jFUq@ zYM)xhZ>gJige4iAgOfX`82_AYmF;>E>euj+D8K=Q&r*@`p~t!4YG^|Oe6KH<1a zbRN*KMq?_J+|btwTOA8CxvCwhOo42~jHKE{PV$rMd)sFluCTF@7ha_RaAZaCcqt{q zDTpar8uOSC1S4H#zgw2Vv98uPY&X}r3mV5taw z1CN6ABld-Ds`-z+|MWGF|5BE4CZ(M*JAhZw3Y4qigd5>Q1tV{bd>y=3;3D1 zHIC;lJ?RW&Pc#y>T@i-|Lg-J{LjsuCvSi)Id9Jx{eL*X$G>4JX2zoRQO#1L>*w4Y; zuGMybr#uR4RQL$}jm(k)QSG_D0#)&y*3d`-r;9&+F7o@-)EBH~0Ss%1r}y-5|DY5bD2g@ATg7%|=he z+h4E@@Xq0K?*H8Gz%b<_UrF{ye%^>hLVzUYN_>{ZWL+m_NTwdlsI7wKK`N&_#uu{v zO~mpeJvB{?f%WQ+SYp1;X(o)ciV0LtDD4L=Na=l{L06y0pjZHA6|QcU3Jxf z#3#L7s~WKa?AU>K31Bb~T=%q)|Fr4%Qr7PDG(DBB;pnHf@0q=88q1##k3$hg2Pe2a z&0p6dM%GRqdgbH~OTn{d>M+LoWZ-3@JaIu6p<2o0S*gQLdgtWRk4(YHIdoV~(ixeF zTgH)i<9Gdy=iPg^$FlIML8bgkuA*eLd&T8kE^_zApB1G%2hS;bVuKl=(!056Pp-kN z*c-7=Id9npWsZ}k>$~K~Vic^y`<~KHKm1|&vDQ_ngjiwFmbDJsi1Xs8n=Q02a#v=r zuGChwuidMh{IoJMn!T;lKaA?FbSgANaj9NH)|!+;MF%>JRG4)21K#y7T;Ry@=<`2J zrRF&!#dOLAvL{Oo#byc_{9fpoj#jLjvCW)byfI^LC6|l+GE_t!tpJD|F4RXuiow_6wavc_S zlJ!FT#p93;mf%oX;e*E%v$zM$klh`C%ag6oJ1VnSsZQ;ikNs}rO{eka{;a47HZeg>^S$6mAZ3QkOJ%d2)Z~~-*zu nuw*6^oj0)im;WcBK zref#TSePZwuSN^*xBvG;Wsfb-t$*OGA)@0v{x{f4C%3UvT5Cu^vPq<4oVW@3HcX-+ zZ%9q%j*+JoH*jWVB1{>#uoq@S;|UXcX6q}`_QB=sbzAkX>d8vy9qv4{XUE6PTbE^~ zUQDK!(XuCsKLBuzg;{DJypIQ6eRWoK(X~&f`&qz|W+}VBgf_p1gXTk}Iej_Ca@bWh z2H95|F||Pza27PrpZrIdprpZ@MB>eg4sBWhCsr-`X%|g;j*1_#Na$LrVI&~~sczPR zF|w{tMf;Q5VHPBdN#OEH$ay;h`EG|8$4vx7)Wh z&}@t1Zsy8(wXFYZ#sfQ7_%$}73twy*?^j{aLg%ICuf`Zqk1`ozJvAckgml1zA9gWe zdElQB>40O4Erc+P0AsuVFD0b*E?=UxS9{ZGhSO&~y-#qf^I zbcY_un-S{BFJc!iNj;^blNJQQ;`qo((70gIX>0kT+LWq;rY?rGy0LTB+HHZgZ6;_y z#0Hyaj&f0t^*zGa5UoFZZx1ZVvw@e@^PP(@J00M$)DWw2N&kCgGesq$J*eNgSGVif zwmBwFaf(Daq0l}DfmfxW-wHU9@_3Ag^XnhSH_`~pM9!iF?hZ7MC=wnbf zC81SkDQqxgIN;^+?O$4#Wo;8_en819hV9q4e{ zR)N~8(@ydjyAM7GLod@G65?dUl*|T=~0-j2KD2gc~o2`eKm8C3J7FA!16 zg^xXP#w}wpJ$Yb~ww3_IJa>kGbREg9`khGqR5tJ(O%?%o@8{B*8GjsHi}P8|MStM` zDr5emJp}xo%!>vI1T^|D+xdS~#{B2lV_H+$VS@w7@1?Gt8?gy@v?1ATb>2E)r8HxX zgL>ap+z1PVevSiKOHG=`{rSQ}avTL+%e@m`FO;Zt{9wyt2S1*Npntpx70Q%q{|(#+ z;OlY^8_O04w3{kNkdna&*Br$0=jpw701_h%S@CDk&>!E&w zO9cN$tj}axRCAbE!w{pL$_UuclokIqnU>xZ&SHz8St>tMo_&K+X)su~KZ#$64!)XA z5?y3aF5j&O+S6EQD8esOENB=wyoCwYhC(%nY1gGxL;+sZD(oKmJFCOFF9uw0b|B+$ z|IxKu-y;)zBh}gurzGh8aqD*JXzBDG40wZ_@F2nlKFVJUIdc#`mO|mJw&qY(qyop(%nj8THwZJCduA@txZ&;z4!)Er2=y-v53%oK6>P6QeA`Z zRb(rsM8L<502|q|HST$~41pQp?30P+50`d{Nj|wBNfi75<}5>e!p2K(v@zNo4)NcY zt@@tle6A&JCrCXKFkWpc{!y_zc#VpUlq-iM(PpN)hkWi^UZZ(~>$YP7JrCZlZ~eS3 ze!YY-+g>MEu)HEZ^Cv`b^gy@^DArR(hm;T(x#ePQUy3&J;_sqJ*sMs5? z%C35`edZ9s3VTO;(I`>m8?VUm{Y4Hn%zk!O1lg_P;yac_?VS`?5(+t?p|YdN#xePa zq>)LgJ3MDbNL^UfN(@($7s$gE%SBVv&W02z9ERYQJF$s}(00GDB%QCGR6(OCkztvB zMD&;gxtGp83cQ&jDJn|IdQA?NJeGaE zGF#)6U#YDaH1w^Ru-=!JxoXR#N|K?FUzN~aAlN1?`geL4HIk?E*Qw;7f}V~lCI!1A z{au8zW@#Xx`iZY5oGQh>Wk2pq4u3D6^KQb@m}+QI$5?jg73SpZjDZ$#)y5jWz{TOFQzcPCdL^oKM|btN8Xy2&PR+hUNuoLN8fU_=D3c1R1-H&3hXPTlbw7Jf5CsoeJ< zD=T3CRO){0a8+-3{s6NYK;9X$*U-9mAq0N)ETxZ}XZbt*xnvXwS4av@ZGOgTz%5$2 z%Hi!Q(4S6>Ro!w*_KKE-?}1)#JM#hBF+OK4qp;DzrnO5hJ3OQG`WZTsOAA|P z6>-wsh?_3LLgxJ1NO`(9VFvE3DEAW-)(!_1*)_i8tTX}w3HthjkyasHr`^XMv1uDfj2b zIy*>f()Ozo$U9NLYlt}*Z+{eMaYG_Q%d`dg+-|tR+kbH8nZ&j={)BI2lFTQ3$$AWB zF&ipZ*OwL+*WuRVGhfo*&88lB#?U?-2bQ4xvKhv*3Lc0q!yFAil>5nCF`63713K^2Isln>F3 zX0d$hqX#My+HLc-)hpE8&Tx?3H2{lLyjcrMg|~I-;F?f_agjZzhFI9q_}w)7&^w20 zjZ1wP&ILP};*KS^*Y(OuvLVk+N`fd|Nk1>H`(hI}O7E5mmFN%$6ghiAG}$dLvH)Ix z(q@l&hns@VW)ce@3~BS3*{omYtc#c}G^~LW0{|!t*@uGpD!%GH$ zbfFCuo${Ty6k|YHlKlC!{V#kzELP36xzkGFV$%(5Ym)qF5_NKe#d&!>fbr^aD*waW`MX$uZ0dO|GT!%L$Ks-FA_R@24m4UD=X~mTM@I z(E7s>Cys4?hXofM&pZ;4ND=}$yFP-a|%F3Jk5b_p?C1B;+t`7jAEuO_`zJ16t2;K+yF?C{{Kpm_Z@B?I8C_M`Pi8C?%jJ62+NiG!}@>D-L6SK9c{PhJY z0Nsus3)sI!`g@H4*=3l)8gCWyGe>Xso>bSYIm;~IlMLyYPM{JKo_A^@L6g;dR)1@BN7lqaWMT6y*-F7bP!6+( zPy=!_<7nx6_f&b|J__ZrHAuxwWpQyT7JBw%U--xd-8H9XV1dEw7)CR8;*`=e1+yL1 z{Qe#kCSrvb8k7AlrT2H$4WUH_OFh*l1pAQ<1Q+jZ8(C51C(t zFwX<9^O>c8gPAPp0eGneJjCAsUN(&HukrOL-jsF#bEJn$VC5zjBfWtz>;<-1tgj@` zopTxV3u+n<&@vZ1Grzd-tA^&H+X0{nWIrRd59!mENfz%?eSXZ`E8={dz)cvKxkNjXpg>7!2yM?ydeklos?A=Xzo~d&h&m zc4ytakphX9^@C#&_Dzw6RZKEMe)DsROc7pBNaSn`i5bm>g_x!z1N47pbfE9Lv-gw8wHq6?CnWF^Vi%0H9GGa*7Gzvqn=E92LOCte-^x;aH@#J>&l zsV}R|HDWk*{yaU;U(;{?`9!dBN*y~1p-u1+)`v3-e$bRk>heb~wN7}PIN&bKKN6Re z&hRb6fX(@i8anbDIcaR#AtjR9p^h5dh?}IkCY9pelPb}}X9hMZ&aNC+BW{Q$+C3vR zWwG?n!8KP5h07kA>6B1*uH_(_d0m9?(39k)+qH~EohLO4`}l_aBvK{IgO)3PMA|Mbw{W_LF=I;I z>_(&!r)R|%KtrF+ED-k!K@1+7W9(ifg$E^p^K8{;f*2c}gX6GVCG%QKp;lz}ER>fk zxOzWmZqv3^Egu1b2>ff8zlP>E^7eEzk9bhQ;n~|*j4^C%Cp|D=B7>A({3n7l@O2)b z&J>&T&G+^J!mT!o-*^V-*u0I})I1V5+F?Tam`5|1*c`D4zN7t}CZ|P#sW3hO-?&g6 zQKKThiNYU^w2k7uoNg+p!~u zI6y#@|BZ&*+1eTWr;Fe}pm3T74!EPp{wrk}Dv0DYsPZ!Mei%YKb^DVkx+am( z6Gs5HGS@P9KDRbPzjQu!M*|}$ByV3YzrPW!%q%d0u1CgM(32~IN_T>S6<#E7Bfy2n zru|Q+m)I1{aJ`J6%EYMlQe<=WZ}YpGqFD%_@+6ZWnc_imgR)3e2Yfyoc@aKi%2bAs z@tS%6k_ClrSvOzjhnVq&W9x{Z(PqfTk%WXa^ew!V%%Xymh+J7nQ)wQ$XhN|sjcO8? zLjdf=he(GLvWR_y6c1SNnM%-0XVoeWPoJ-bjpxj@*WCXo*oTKHZTmU;ylhMVYzxp- zYY|8ir=zHR&*&Cgo?AlG3H$nRh|r6+25^CMNONCTWIXB>ix6)jjCodL&>c~cBdL@a zvuU8$vt0c>W&s`;Cb4{ccieR7Q}p^e=m}=o<`MWf8yvN`Rlj*`_HcIhsY66m+`Ar3 zUWuQLBh1}h@IB1|z&qgO0j~d-yTC8AxLA;e8cO1d=hQ`C*$@vm)O5g?8AD(lUH;g1 zzzD_QmQBQkXzxr;%DGhR2_yw2DpN`BES0@zoi|qEK%Qb2Uy3PL3dFfTg4#a{(Qb1K zyX+2*&w)?lA;p`(3aboeRceHoWH0lCr%^~3N~O$RP+Gj$k^NqJ7{3c=+5(F}P9)`@ z(-X`mrk`{+TbogF_@ulmI8Kd@O_6|w%MrP#m!H}%j@b7_c;|}eZ|}<(zvJ$-{tx_1 zy<4+rgSf<;2P0IoCcN!0*9qlGsQnISwn)rIWW=i*vNVt8fMm_PA|LonQxr*@fBphG zO`71nWPa? zMcgxzv@5i3+}TGB7jOYmw-p?5h!}AibW0GJZ(tFgVxK@^EXK`RZlWXUF`t+qp<4XF zT)RTVQq9!OMu*eht~*aT(0JR{2v-ZIjxFpXBw7QU}C-1nwT&AdK zZh4_eC%h%9&zn&s+>r`GHTC?<#;O7uAGKVJ$#C|2QNnNKjeSO;@-gry@dXRlJu2wZ zgo1JPLDRp@g2Ts_tvnF+*ayF|bOw8>8Z>nz+)b8VbY%$i5bpmO4BUj542PU^9Ag*; zjFehyS`wXN;Q|XyYXpaRZs_zH03spWO6o&FzO;(1Fqbv4Q0@j5LaW@HU1;%zlvlhb{o`^FREPUe4h(!VBOl5v}cRxHVx3rs!CaDYnjA+O{H7%c|8i-T{wDvS@Vve~g_2b0z_}rDNO4 z#I`-LF|lpi=ESyb+qS>hoY=NEx3+5U-mTiZTisRt1G@U{({G>iobFCE>y0s%KHU(E z01kTl$Ds!1Vb=}D-FSSye{i5cW@ufi@pg|-{UbJT(D}zU#9XxT68JIoU;5$sHqr5* zpm?6*?9*exX@njj2kp#NCnn)aJ24@k5lw<-Wu=sFGLL`6ck2GsI@Jx$ZVmXSD4!s* z&u^?f4P(lEeQv+6^m@5I?&j8fz0O6NrlQaA;clUZ$&~nv1&yQgA=yEZHVKTq-HrTeM8{RWY zs=7;0w7_+_~7kA@O z?}3!Oqt`h5#&6VNe^IOymM|sM8Jw0)gma$FiYRMZ?z&V}mM$|Br8HL!s&*^v=(M^{ zP2pw!mg`np4p;qjLbWMbRvpO9oF~CJInBN(bqh?`?wA9a5XbChDMe1H%PzC{@*SMp zH`3+@-9AkyW^t8Gr(YS;e|6QotwwJ3fL-{uOe9;+Y+{?>k2*VRq@Ny(Wp=Px)*#QN9&(zrHt&C-kFNT zr3dmd!VKt2a7d_s*w{Ue*kq7o2g?`af2x!J*f5Bi;Pv4BsFUTNpaSLpzdHHZF97UF zfA$MYyg7D$8&+DK8qG*VvU{u2Kiv9;@rDcXR3xhf*@lF0i}i&|hgz?W(Ji)kjtnkB z1`1LzNLdL9D2FjTk*g2j8%+Cy0c3=D0pjcD3a^n&9Z_g0Q_tlh*I-j zDPVp!m@_oi6Qal!Mq@DY*n&DDxx_$nUh8?^$_qQ$oIFv)%BGzX`;0*LZ1tqi0F=Ok z?Kf7hOg+=PmfT!xP9J`#f}-;m$$z+S9Zplx0I1t)8gkE+aKE(DTY*sB#q-j1c2E}) zJRht>g^aWuZ1PW9sU|m83GR${Hxf7zj4(ivl1alD|DT@d=6A$civs$&xRdFAkm!mc zboff=nv+qCZ1(;r%Q&p1V0H;D=be&wbR24In-pH9VFWn3s?I3QLX2haMGWpA<0Gw3 zFjJ2E@jtC)NQ`LHATc|ZuP`f?(S ziC^);&i-!n!F0sW;QA7VKqte{pzbUW;prBlU^mHyu}k&NzFIMeTB@lRWXqz~=tSKLX_fwB+LBu&vU0KOTImur z>n+%&J?yQ2F#5%fv42EuXG5qJY2j2{Jdm2A(sJ4G`CV-@xp%yMDtDL>L z2F?;KV#42%(xz7`RCOC{2#?FFI&3J;Zf1nK=006?dULFb#K|iweM|}X!|ut=3!Uga zI4;CHhC+dN0*`!a_{|sv+mm}#8xgpr99kRo?yk5khdOTOgUeSicN^=RCixZ`kWM>Z zLGvf3@T#8C<3WK^f3}-Gw|Dcx*YVNp+xs|iCuNGk_Kd2?t)Nve;%hY5rO#ii<@tl< zHFi)06eOWX?8^*}%|dSR?_n1UT;;z{LYPEBhAD5nh&_%^PDGQOo$FBA7>{eyzw*jP z2t^;X_XJqw+WaS>Visux@1OQ~{)HQV=tmg(N|Y`~O9qW9aXN1e)^8Dc!RRq;zwPC| zp10d*N_KjhpHnn&Vx*?*)9{6?Vf3z|{u#9+qp0yqBl13+q;Rgpej*54#zoqF(mv!l zR!I#Nl0wZCQ5lu2QL+&X`>G|SLrtA1uVFCco9N8qlJ@>p!4h$(bHNg6-;OFYwtpH} zo7~ublGZY4?F_z03iaW?vN6dg2wGbf5O?TViuBrk@jT&2+Pc|AY1$6HDlh$MQ-fVr zdDYw3OFWITWN{nTRJq@*sh9-s1=@yi6K$>zSyz@N+ATAC+2}8*LSL!UMz<>)=VgNI z($6~@(j25y0Bz!DH&5@k1KlO~)dcuQM+medAi&?Ajm?48h)n__=$B^|JzYHk=^F42 z_vT;7Wz0#R0in-`G{&vQUK1{gLl-`EQOHbp08VO?QWcdVYI+1~LQh154G|jIHvZS* z3e24$T6LC9yJVLPhknjpl+Zn(qYI@nDAG#h-+V&lDcdlB_sgLBiB$MrFE#IeOQ!S} zd4j`qXBIXb?`b^h%X;cAW-jMcDE9z71Mvz&*nxrf!Heeo>%Kui0sOIeLRc*tP|&7h zj#Cz~LmFKhD5x-}OyWTQFtU@HfU2N9x%MJMg15IWSMc;hR}mUv!a^SZEcskUqOLKK zA_)*r+rMR|9UoKe_B!%?0wFhGM0!gy%y3$+RC0r>;W^0@!y|57syc?1_D-IsN?Z9M zeF>L~qPlEOhBcmxztzcW+BfSrSB=F+qCjL*Q!*V`4PBBIgYdk(A?-ZpP;FCxJi&z8 ztcZsyiFpM$do(v`p!TTLF%U(A3CUU>_a>y&nKiQLm8DNafjoen_AI9K?`8UC0|lph zW=^=)x?1)3A!q^o#V=a*$#i+fKod8U%SE;M^mi)F<~l9hVX!nyl)xvw5dLjg;EIc< zMY3!6V+PX|p%A*$GJ+NIHkl|TL)n-`B4ubMU|5kIFc~j!>C;PO~QSugqs=$$c^3L#oy|8`MCnHiBB7o19t4Bw543c^nU7!1<)jTa|; zzqs}@84=cCF;Z5eDSmy%1kR;YVL@&sxDlxIW5+Xu+F~%;0zW-mW(GK3A1j6sC?k{>HquC~F zTC5;cfb9Q*mC_r)=E9+lyp4HhHM>#a=+SJdwq&*30shdiWOMGJau|4~(o8G5nw7WS zq-iMo@w~c4dCQ|zwo*j#?|dThe11RGE#zYMUK`8)a7g{I!qNOfxVwvUi$joH?GRCb zed71*JxcFr1o`9*TOohc=1FlsA%b42G|cbFuv?oA*x!Ah;=Pvu*pCI9N9_NU82{l9 zc$Qvf7y$(Ws(=LoBLD9shNFXlp1Fy&y@}(0>_1d&V%NoxzNTxjUY${z^b@=-%dbGY zaj7jQn)}!y3dS@qfZ3Tkr?0r}Umw$Teyu*Hi-n_=OSrka<#-&WV~(gXzE}X2PqnQ^ z{WIXg{xG!TRs*u9i4-5^&;s3Rf@H|y{YL*X)kraVBp4}PlPWgCI_8?9lOM!otB^|@ z&ZgOOA67!cVWAWaftgClf=QWIvpF5?E&EBb>kiH2Sph59M0oZh4;IoIjN%JQfEJ4t z{KHw!D%d9)9st5D@>M&?3P&@T0W1fXOG-d=l~Wx|Fbc5@U^;8QbLx*kx8znc4V!ar zUOzKA85)(d4|ai^?N**%Zdp5U5cW?W3LccPQGTd9ik8>l2cQ>Gn9wMuH}d{?0t(}- z#WcIUhT)St5jAT7IaH)6QC5X76|92wF=v!!1OkVKAO*J|C6Q3R1PmpSd=6bX^xtiM z>I3Ju-h4T9rEaioxr3LV7l+PV-MMoXAp2{-UYxkS)*y=%6|i{FCeA40H&f=C5ir66 z{F|%5PC=Aa=h8;-xm{4(7HBo^(-QUI_;zpTDy zUatBmIb9FWcuPt+&Q`@l6j&i-7L~;d%iJC~SZlM#C;`} zti=UX5f|Vd5Oj!h{?*2rYoRwoF$?K?;ngr zx=;(s`(grvFd_PRla>bgwminUn<$w}kx`eBDyXafnQ^PU#_?@oWDPprpK-3K;0v_E z>t~}=&|>{+$N3g=Ft{Lh3_kU|JbT1p{j6i7=+P(bk-c(i8scnq0kf-p{EbN*Na@Sa ze!@P|cYl1|VjBbEFp32ar)@?r75V*q`>urC@SbwLk8l(=wv^7p_?R=LII8!<4tIVh zfK@51zwUDhUU=d%3K`yM+L!7t-?_A^*=`w%+ua?=SO7=G1jcmBW0?&iy>ja{8Wx39 zu^vT`q#h2|nG{vPncu-EX}C=Lnr+c@XcTrBe-yXTgSDjJQ9?9l%gXsB4X_K|viy2I zh2e86)*U>KMDku=vhjM8OpW3Et^tr)uaDDo+0yPC{kkOP<7*YP=8(hkGVh|E)@i;D zzd!Z65qkys&q?qf9~-k-u*bJQli(Ek|FH`FFO$HiS#>LRLj*~0H0ItRwW7~K;8hbp zB5;wMP_P_E2yLhvIs6h;aLICJ`+)s%#bd>?ET;5s(+>>#3-t^83)pnTHS727h|UEb zVARvq^@*eL_B%aF@8k1$A&iZmV5F7tqEx_egw=>9b{PLXyFNAQvkNSL#qu+|WpvM< zH~nds#0}^`{B~iVpoN+arQ0cbZ`wNWE&V8h0dXEQ(3BM!E!7qFLk5m+3W_DZ8G= z*JfK|m!r1H&H8ai*XR~@n|+0d$rM`@aVrF`y^5vpcO&*ocnA_o41Ux#lNc!`ey9E) zkOdM5kz6b!P(y(WR8T_+xG+#dp(#LOIixSf0&oc%m}5;9Ykel6R(}W)-08z|J5!D- zzGN!@Lb^+<;FNS@$|L(3S1TjqW`uR?KZIM-hBl=7Ii<}M*c+wnDzFg} z`&5tsVtIxec`z{w#%U@mXtLcVW=S6Y=xCS5A>*Z|ucuwm*MIlzy0yo_5&I&T)RM== zs`d28$t>a7rHAbaX53WHTr|EeSb<6QQ?e6A&QZS&2IE(Fks+25xPhmjNF9ZNY*53S z9MsMVk`h=A-B}zE&3|@?*|BpBN6}09#J`&Izk)-L>vwp9;Qnn3t_Eex#CAWd-lj$m z?=-%o(#muAv=GVLyk&zI#U&rJl39y17+10N5R(|#vb0%#{EZSu3C*7S>m9?G8`GR# z6Yv_g)BFUFbbTv*L;87MbS>}}_U*XB=aL3*8$0HXoqeOS>D?TwptusLEku1H4HGFZ zW0i)fd>-^sz?!ba7)yNS|7UgkfV>jf2Yjj<10Sul+cyqsYMbKZ#zsi|WGlb{%o(f+ zFR}y9>cEtGNl|fJI{nBYIZypB`~r=IbR^FLf}2wTN+meCn7&yFc&Cr{wdw5IWsA@t zA)F6l?%>?mjt(q^W_!g&O>kZ}#>(4j}x5PxEhxy7gP{VYOzhNbjnw z4AIp|@^_i`mv5QZzzD%WPGX25CMH6BB+xw~CdhZZEW&Uzc@qe!LYqAR0JNJ9LVnva zqm52^xoiMqV!3;{L7qP$!>aV#iXAcb7U9DV2tVQ+(GlIlfH2rs;EhyiTCT10L79;G75uOu@7{R_jkj=d*bRTq z*Z&5@X?M_)v&K}-_4XxEXk;Y0RFR@a~qVzwqyBLqTyI( zVc>!V1J{c)#bypI6e|-4Y39L62+L;r?p5_)pb!HJkFe}iFiG4|N&lhoL^MJVc`)o( zruN@!a$m6JXSJs@L~5l+T9UT=v$D5Js_*b(J^LVM`Pi*X(udDl;n{RE6 zENF8=4O5g^Pq~QYG~paFbcghMXu(42wfEqtL-Rm%je=t#iASI>fhUiQZu+FDw-J`} ziX1f~*;#6NEeWGYQy^c3CxCxXCe}L>!z97%!1LSR87YrUx4EMi5{v$hO=AR;bdsil zp6aKEoLM^0_03pF4PBBs&$nGFkuy`?F-I9zHCh0~IPMud!drV72oLlF=E{^CH=IU{ zQ8%(e6R-Pj;`P;o-*o8d-tbFm0(esGYP;RV`})A00LoN!8=$C}Qj}MEUgTdA!ywTG z;z@psRrY7!DFKr-2NP{ug=^kRmlVCOQ+&c(HG32soOYq8D#Ey{2F_ISEDyj9R7W!{ zaef5d?lezqx6Si&0mZ%E@^}e--tm#x?tJ~%5AZ^~#?6g;M;xnuf8Or6znT8@vUkhe z?0V*VUC#EhdxQd46=ZuDuMl_(7z0}y6A_oCWP?gO%*t~Vr5LA87wBww<<3!Jo|!R^ z7jznnz?du&F-Q^EMyo3tXD;81;B~-R+F46Se@zgXv(~AG#SxVd&{ZbIPxXL-kACri zvd+jNQ`b8AtdMAc$uUi=0Jh8~%ll-NN{qm8(6p6ajB(f1O}aCy@%51x3f^-A?ix$I zqX!&2>8Er7mZfKh+ep`>i2mf*<0NP=XV;eH`6ZN6W!uL{q1`6PRz6Y}N0gwS=T>s+ zJXL-$0TQm~3t|-u;yXsAhGn$x#c4EVu}GKo)Fd^ZMjhBRfVOIxXp3qn4DAXmw1)v$ zDW}W{>Xy*Jgp3-4^^Kso#GvD)Us=A=+oX_g|IbzgLaGJ4nsk z2;+Sr$u3>pVGwR+nc_J_V!F120fwzL`G?Ml^G}mV zKSAIJDi*$Em#?0rPdZe@caLN!DNpQ2kU^OeSwmvJOtt4Bv$DKDfGHEjgwV(|6h#$E zi%zS|7AI;NajP_&A}WKAO>kl@aOn0`SjQVRmG*|+kYk>t&Y4s7El^<+uAdC#mixDacyfkxi9-RIvPLI=lwStwgknH?CsK@zL zIH<;aGUVOC3m&B7c)Hc!9-sRIErhChAy$;TR`7yyA|Z=bazacl{~LmoAvA@(l^D<5 z>NoAk_p)I;nZnNB2vmx{xybIOfh*aPK$o8}zE{ATiXu)Du?irqcLag-ljSh3tnB?8 ztjD)AYMa&k9!4L3+XJ;UGuehjFYs2N{)jUB21U2T2<)t*eQ4Ii7_(f6m`a8{<}XGBC7-3OMmbvR&vhp zX-329W?l_Oa7>R*lW+oK+BhBsqr!864ybW|PCl)(H*)8rcK~QL# zZUzO_$#$H~+j#=>q=hFr9zNnRZ;QM_iwo@`q8&ti4YBc}?3ZEhHN%kPM$nbxb<~6d z;J}Q+y%C8*P>GoZl&ZZWyhn(Am{XO(RI{NVkTB@8Rq5qI+N*skID>d_I*jg+aN~~M zq`0uCO+ro5_ZajAFvs(kV?dG@2u^0edF8eQiO}iWT5+kzkq^)b@}sduXBLj7Me8RV@7&0|lxu z`#dK!&@I2BV3*5ZfY|zxjsufm;g|zfqXO>laHPt*Emr^;fgwC4r{F^u*a$q}#rp5} zhT~aur5r6A+qIq3AdnqcAZceRhbmbxf`(OaKGIU1(oYZX_2r`DQ?y=2dF4Ts14gr# zqwFA!EgVzp+PEl9y%TD9i8w3Hmf#}=0@Wvd;&FeOZT?yH6aKj~q(;+C=b<}GHwr2c zf>%1VbMV&IYUHwii$5uk6_Coie!PdQ$`LQ=P}8?5SVhPqO%}+;(wsopItI7Imsnn; zB*aPR#qW;-dLkqdKGgEeVf!>z2^`P=odACH-RRru;2q zYexc6_rYjS1<#<1*}$qz+<|6CXS2eIv3K2O6-OeSHgu8D+AjnANajIm@&u)Xd*=F4 z#-3y{O$*#;S=Fe~Cb9xrIdCVoX}VO7-t=p;Mf1>Bmi(2wGVR&`*fzHAMCD`Gx20L` z2bT?={{74u9_Ll|8v$5b2IM(zD9tdzsk?dHpR-vPQ45($>V=Dk^Q=v@lVpKFVIYaz z=n2F4;pp~nXe};(o7*uKseMs^tAEOdhd~EFsL-M}7)MvV4#_e-Txix`D>&Ae$#rq zgtZmK#V%teehi%T)li!G@cT{>Z{^yOY)7k40J188a)+2{vqm}{23$A@xbHQvLED&Y z;0NjtvAKfRk`OudgDQqFQIbs@&!8W5jzA`JzmQDE5T0%rnPhDcX8x4&eo#C2MW)$CQc$UW+c1J$6Url<HfLF674oHgSbb1B~8{EbSh74wWFNILCaeK8yBA>u~PRIUsBMujfcXiN0d zK4|vQ(-^)|M23eAUhhHOfxxFD6>|kHmK%MY?6g3y1q>@GqKfSB64O`3^cvM{{!e`} zsuS8ZfuDI1a5-s#IjuO=;qrXQ~gTo9HT@VJeaoco^E2=6}fy5N=vNmaH$z zatwQq-;yfY^5fM3AG?79kq|e2)uzPx1HVe5nYXy8oZNqMINj9!jt}na(}~2H3sD8q zM|}kuiZhW8w0pr)0LJV2g#s#e_#~NAR8inWvldmW z8xU_Kbp#!ie24@atw#!n9Yc-2Sd>TG?-A23-$QJcEmKzj%?e&%;WSlyIM-ga*d#3T zmt!OPQthc4BTrJzyhc+ZKgS6w!2E~@Y~V;H(601>)-XJ--vH^y0BP39%9##es2$OX z@d9WbuW;r@EcN@R)CnKuMuH=y^a2MV-vux&aF~Du-BR`GyXpI&2-ZDt3^xa_F;CoL z(|@vY%RjLi`bNvF)#Y{5A4_W49rB~!XP62O_8E#PlT3?;%;Nf8t}ik`Hoiv!!nvyi z#h?~WLwE%3w$Q-q{dl|3;QP0&%b`8Fm%Ki}ZyTf}XH*x?I|@s<1&g$lE82pi8tj9l zcZau7K(|^XP5t_P*&DsmG!fBG0$c#$IUp|fx1upB4hH<|%98NKY9>ACk<77c1b@JW z$@2No4977Zs-W>k6G!op9&2XQ?trgiN|px1rxpiFTKDg6w_1niOFWZNoAP3=YLDU` zxJVnE*dm?(FXv*=i1A1&XJk|7A#FT%!Q}b zbXa9!bR=8E^;eSR9Hyh)*hiR?w39h`3RkCr7~)UvkDBSb{pRo1td(tMMvn`j1#@TE zHbnrr4BH0Q>2Ba%==(v_nDx|n1SFs2zAh1Vv7qCIvC1vh;1_d3Gx>!q*dPV*%$vZsYggFRjP?FOhnFZ^tvf zU!TYP?^IWM!Ggn${O`}l{GZ#6eqSqkpG$uH?+3>>Z>OdF9#3nry>A-?e4oRyeDA}da{OO&jj>y7-c`7y7rJKvKG{2!$=d>`jCzIULM*w$dN-o&=d$WD!9DK`y=`8FZsP4id? z*QbH*I)`_^GKT;OcnvVEg$+xsL({+YdT=6rs-Mj2v2w^9Ip4K826%E?FiZ_<0^@(R zsk5hju($EFpp8x8Wc2KP8_K0E16en$L14&1n$09#uXvy@>$J-T*pb;RJ7Byre_*i@ zeet;y{}Fau2ZIc=@yj*-xDjIotm54;SXE|qiUmE>I2DJn{fm6)|C-h99T1@o87IUA zT^JKHrtl|a-hU-S(kurHpK;#|la1|Qifl6|r)B_nrs(EsGPR?h7I1snL^2DrW@o_Idtz&Fs#m%0E--`u_@sAhJvd=jPMEDz!}6-9>+5m7icG@K z+Mq#g_BRt^#DCz4JR?4aU|j*`Rp&_hk1ur8Ee#sBhq7cT=&RbH^=Yn^)I;&0LSjgE zNyxUgZ1J6cavR!_seZcbImi2A;)th$xTkkS&x~wlMk8}D`Tb^NqF|GFH5FAn|{D_h}Ad}SZ+w9UL+3Irej}leKakt8&Uc^!R1EoT1g%UnujcM zW)z4Q6+h6`pq!_jo8Vhl$+2q?H1(3~W?A#PP=WwANc;Xrb}oT=Wr*;gT<+^Oc% z5_YYKPBOet(Z=4xopKIV3lW)1bLz3iw7qn4Mg9CRjM%~Rx6-CT)Q-PxY4x&Kk>d3$ zgkb*MWQufvY(t5gv+K*#zqQm#Q#&lr^`V5Pb%&9p(u0gUX=*o5DB4${nt2kWK6L>kmgP-txYeW-Bxh}MNW$sOSmr#b_@h$ zw}wnS%32kdfDxcRobJ7cw77RbLhB~Z*rk67M54nFRu~-dmkQTh4GI2@khbVIZHS1Q zRnI)Rnz}S=O_Oy^SF)UJo&tv2kkSZx2-2-Ron3T?*b@>hXiocu#wQ3}^1I~+jZCw5 zu3vyOEYBc2thPILy^tI~u;=PPD4iQJ6s3#u8QIQ=sQRdA zJmzk5_S;fNb@u1hJ|v=a%>*hJ#x1rl0>#Ls-a(xGL=_9Cx0=33ZWkv$k>t|muAq8~ zyT{ASbx1YD66<-?-C9+Vr^0R4Mr5@-Rw>DbNbm~Fu1Y8DwI=I3^Y4S3G4nz5`+jj% zkHWU_s0*87mUR=xeQ*mRFLG|VY1LjazeCwH4&#`Y1=v&8^yVf{S68FPTeC-h-rQ#ta3rp{$O}4==H5;lCC4vC zrOIDZx_DD(g62-(o5Bb$xu*2L=pFSp*)Xd#n9KawG3!M+>IhgdIfT0dI&A2RL;r$0 zEY!KOHf1bK`?;q$l259{=PIlb!sUpjl`%<(=tsGGfTG)+z*sh&&G{J(j5sD%7r8^BrXJ4)<5hvjlpX5(EWR>KB~V(LMw%S#+xHkVjHAcao?g(zFktK8*gp%%7-QC3BP zuxq~)5Wj`EwS{<08NBtDGD|+-K=?zN;}eNiO87oeq>7T+TRZXVpCXR5ynN^MQMJ4n z8K;K#EI%jdign5Q=B%^8#mC?h;z$3lb*-7C-WuKuJ0KCY!nct*ZzY3zCyn7uic(R_ zv9(X!tekCn;~T``W}YN=G&Kz*xFduElZ=6wcszw5O*{(w3#ys)wYk5x;Y-M^9nX(7 z<#P_Z+RYql$6S&tq=LP8__!YNX#uR7f6}+(H4QG=46cD71VIU{l@gfZ99Yn^MI<(6 zHhp!r_nC2V76*vi6YOOt?bg0E#lsiqS4Zy5WO)F9-9nsG4& zHO8IPpyS>CZJCH9uFjcN5_f6;mk|WbLP)kNgTo0_*lOXj>p7rRt1QWaCWKy^KHoM} zuc`yjbMaCXLwDlbiMB6kq2S2$=>kV=)6lh{+od8Xc{MxV^EsQ}{{BO~Lsp#54*%9Z;1PTXI$3{OUUYCC}X zdS8znz$sVYNA!C_Of9sg--cW~A~-(>%A=kaz7gn8OJS0ZK!CylQkv=^O4NmHdkGV#zq8ZjOvL04|V8?n>jK z4+s^;mk>!t@! z5AxFHM2}azT_pg%)Az<>aP<6wMeGuBY`}qY+SfU0<%}i`#MVg;wo&0aK9=%6g6WXEl8%mCd-y>Pq%_EBJ zjEub<%@suiF?&~ZA0CAUTKL}=H3yBW4~GBx*FW4&-AV2T`s!l*-&>6TkNLj*{UR(29*{M1k7yW@hyM{RpQ1Ue~ns zX!7+vD=Tyk?=;}lViPzUASp4c05KI zcjxIXOjn4qC2C5YEd=!AAq_r&eN)~To zyY)s>tLds~i|9a$napbN#t!|iI(>Fb8TSG0M1@>dgE{LQ<~i7!;sg!4^g3g9JEq;R zH69!GnY5!aix^2CIVsCh$SYNZt?IOxCX#*n^p&E|#u6^u0WCm=S%%4d2GdHEhruKJ zLKfq$4Q=)xX*&)8l^S<;%CmZTrpT}bt+@0E*;Cy@Npk`-skU}>e!#Q1?j@$1hbaArN#nu7S`3>7p(CFpNX6eVGdIhWH z#EulX`bPUs{9w>$&Wbt`oo4RyZe-`Is;zr@#8@<(o}z${eLbZ20^^#=TC-*ExQo*0 zwP!$1>}z{nkmck7(hQ$FKYoW6bEjL{3a``G9-Zk<8m|$%6Mg55{*K^>UTfVzD+v14-F|@wQ}D_$mKGIDXrj~rW5qv@EK{x@)b*t>+VJC z;qi9Y%7u+?v*&zBD?~nfyS5(R+9|b0I;Dl}4i1=e0AojMYSVgsw>x1JclFKY(-K&1 z6Ta(o{v6y+<3W8S*=Bi499q0S@MgxrigsFRUqavs0K*sBSLxkv`|vPlDEh(&p_{1PuJ7$vhjj~{Y*AxM@MuQtf*`R5 zH|QF7-9W6$`)_s$NY6Y`t_&nWC;J#Q))1yFgBgFw7-}2C&XL`+=gzA-@#oI7I;YQE zwl8kuHTy5>ZEY4WqM1l6;?oNxMY5tZ0S#-D0R`RNAa;M!x)n^xndHX)v`;lnP6-4N zvcTF#lyn;-V5du`^T&tf>ao6)B~E1mz#G+s&da(aLSDy4xzXM=g%Ci%X%i7@oPRw^ zH#e*P{==9Iu&v(mA&atv&qus_kDTFi{3oO*FnKEwyEdtqJ4TJDyyMHjKaiT27> zBE!1=$Z1=xbJ%vs4YN|n7&26%ZTCQYN?0D;`B-i9yU=3IwY9!K-`P{EMy%>?NmrRg zHpp&do|yU4R%fR~rx&foO6$=EgTd|h?tEJ%Ug%|W!0=`b#jj10c{9ssTeIqB-Ru!& z!C5sqqV{3B_#PX0JI(CD?2Wk1m;=@X7TKhl^4X4dMN}pE#3c)|=Jn25=7Uly^sYdT z!{l!0ccobZzX67#*TCFI)9ysy!N$yp>mi_Ry=Ua2%~*PS>67f_gTDqSYAuEIYPG~g z@{$D|QF)EJYuiW@{H2bs2&8T}oi1wElEqJeY=0`-Uy{*AW$gw_vydSM9}q2wwD!~8 z+kC1+@>L$H2zvM3GkVPLz^YPUd13yaQIg6hlDV2!98f{IA)Je1a}#6-Ev}J3m@2OOYhOFI_*={ zTn4HoXmT!|}Jh}vHo9k6a=2kRbdbg0wi3D?)5Hd6nb$=#gr`dQ^Rkm=U-ni`0Cfkx~ zKvos$YHjhKc6HNA&5%xW3*@U=f@Gj~aHzL3Pjp?7 zIJ42R*QTZXC}jX#!Z373^AVcL)cgaC-x+s-*B&^9-wdT`70A6BkIKvd7}MoaLw(r^$Rh~xn@*~t)HF3qDFwJ;6zViU zK!}~O55e^S8#)7n#|)}dUuo4X9IkEaF~`-bVhy3!hO_)LB@K4V%F`2tg_-l6c*Ft$ zn$+D-k+U7f;zM4T3I)9&X^i5Dn;GLW-JLki=Vs8B{)DG0@H?fu9Yh z-YKzinPnGN5S7eE7|#?@K=j>l9|0wzztOXueTH0t3erR*I~M06Vn1jnZpp=?1(Mdf zq0Q^P5}7lQu>raot8Ne%Ui@JV8|}n_v70oRn!l^Mtb?~F2l@uuKkqD8Ps9MJGsx3q z#4c8;n)=Ha#=rqv3jb<{t68OQV~@S4tWgQkQL7rO56)c25{O^5YSpo`aWMP`C`6yV!_v8%h%Rf_G&bbl}U27dP~6p9+vl zpLyqDD@znNo1xlxI(nVi#9BTm#r#$=kg(Z(Q61wA8%(Cs?_XRG&Efc<0)tf-876ki zqgPyqGOue>;ri2=>EoWOGLL2`<+(EVsJ?4jNKoMv4Ifk!ORV_^LjF$?zROPh;9Ifc zmpPmMb-53eSfV`d#0R4CS6}7BhAa95FEdAEdo*FzXJd?z-7}}b_#W%}iK~+uWXdj* z$kW6C6FiX=axlY8G_yF=ir6EWhsiF{a4JJj-HPe3p_FL7A!oA+Kh$8DeHijL9kdAh zIo^Q{uKr~)o26r3D!u2BwOif&n+e1}m#%0qqlOg45>TSQ_x53W_+x@BVKc}>VY_MU;$`KEwMXc>?A97SpO^{< zc(pBq)vxKGFL#im{E^t#*}NfRXma^2;kg4DAY>zdIL;B- zFol_CeiQy;afTeknR`cjN_{H)cvF4m5MT=N(D_G0$1aka(2pQ|*~I6!WHI74&8=AL zimfVraPs4Fa-C8DJ9!^Ut!Cp8spzLBd^$xLR;{(fp>ZJ@OxC}ahz}bH4ukuwz(2GQ z;N0cG1$XhB81=-zCiWE;qbsh56HFA}+>s;)c|CDqxeb)(el-DoBs*XwR;u5Si;_`# z8OK3LApJu7n(vF?^7aX$8RYUKVXQR^!MKTr!?=0$U-I7cQKxHI@p0m1TwytS3v16| zv*N1SD~T1-Z7;`NK8Qw%Db^RL2 z5chCLC|3U70Xc{HiDA*Ge~Jtbw-g7g&C$6)$>rxTRfh1`)p`%#SWw&Sgx5>+`?zWj z+pc%>t-rPRH#6aI6bUvuOHs=)Anz~_Myy&$u7oF?!_&&Dz|)qqqv*nL{|wu_)e3ME z;pl}`2~MyGa<1^l2)>aGrV!Xd%;+<$Q(H)HNm^DafB5HiC}j0RB=O=<-RkwcF2*o* zp$PJb6$$}vFG=rc!?ayjEl|7^YD})t4=pD$W&JSNjF`|DlNAW`o8 zvM4!LoxEorphZ5GW1#W=sZ4sPOq%@B*m$_dTz$K&4cV$#Ee2Ax)Y1XS>1)d9`FxL~ zCGnt0cwcBIqCJX{y&E-EmI)ELl+mRe+kl)UUI#z~xV@CRcf?Vpz@P@lVjfTIQ|2Gt zI`j5?EG|IelB!>cXOB*BOTgj%dSD_PtY#|O2daq&!jG?jK?E6hpb>BX^_}yqS_Sd? zZO8WF2e6bc8Z7~1=?^A@T5VN0)z!^lRqd?yUFFodK2?5-yUh{2qfLkQ*70C8%V;fgI;|{<8@;eyfDkNg&W!0R+Kc z0HSWLuNu18VTV<`iCmCYwdMl~_api##>FB+oR%~5V6v801NrnGTxx94KyZ%nvdN7( zEPnaFZO!*jHyt*z@v96h{@JN5T~eLr%di~(Bj;G$b8;&CR`DoBmTT+n}`3T0T^*wxu+dCSMT62f$7pN0$469 zyG}pWpxpSG-)MMH5nndzbReG5P?^ss*C}-PDpazf*2H>2Vx=vyN|GF>f|TkIC*$U$V*$ zrCJ56dprCMhboi>f2(v<5UCV0o{DB?oR!>=q2jJ7n!%)Zi+><@Tv${XHU>H)hu(Rw6`vc{d(`cn|J@OWUI z7hb^SV~Vso9n3EuJ-hf5z$%o+eOFHp05XC4)@BSq2+JY<-Cs^}r{E{hloNi5bWC|q z8i5biN(dh_vc~16=+=?>a7Jh`yD{IlMtvIZb#42Sl$L8R?T@c^6nmd& z{DV3POcIUO4zKkhci-Gtwy&<7+23FqiIihY1_7K+qP}nwmE$#=Ea@45%11?Rn$*KMMY&+?%Y{xZPbdaeG7_l&K~4> z;N5J2z4JKDoOHc#Pjs^U#JiL#1}CNGvPx_BK%&C^75Xw_zVXL_PUc+pDv8;$wSJsy zf#Z#D>mwdFB{orDyEx4X31J@I^Bkdy&)~!kb{V+4~`*+hP#DA!xsO~QcJI*wpJ-^dGA?F&*pD(>EG2GqQ0&tgEs z@Z$Wtxdafy7B~9@0H=nt>5?b+G7*eZreyvW`_lwpM5($DsI?DwEq}_w0y_WlaT>CP zfI9`VhEXn}lv8~cA~P<{5aoGN z;3vZ`%@Dr1k@PUo(7jLnAYFf38}S+~lUj&te*xKi;~LFisYhS&f4JCx+~6WNt+cgh z6;v6k-Y6r?V&^njmHo(RJZH|wR_^aQ|7@YS6TwWkGH~GU66W0?2{0PT@^$o_0|r<$ zX8tZp-E3zg;FZjmHRa}1x7Q3sWVe{OZ}#{SFl%2PsmsQ{MbiVsv=3Xnh`{@YW4nj# zCMvf!3i$1Z3vh5Bs;e+RN~@#;akB2yD=7j!Oz?(F{Ky5%foBF%xtaMlAx4n9j#kaT#U209Qgkt4W5>Ax0xxhd!m{(H&zv zXDIZppEf7{g^1tF!1rH`dAy#?d6=0RfBU2Hde1285soy#u(~!i$xcwU*styO%PASb z*1``<@=EQiX^sUmF>BZ@EiKEc6rhQzkhR)5xtLeX+O_Y$@?Y!ByAMLsRt_C2baye@~LUbL_O!3U;tj8w&h@dkwL`}59egXl-i)lsuCAOOgV zCX{qhnCG?^@DE!F8-duArc>@-o!~JJ*A6T;!1@+u!jyop9<5U=`A@L`fRz$ zktxRgalPbVZvgGErxg24noK!{nwT3hg|0ZB?the4`C7NEySWF4SIj0ES)gM%di@M0C;Nwv*SO<<=W@<5Hu{7T z#CJR#&f5~gTfb(lzPdV)y&a`_(d14(3@N+Z2ZS72?2L9j3#9x3dU_jHOUGqCy4Aj7 zE-79uk8U*O%hVjgcW~uCg7ySF$LF-S!>rt09#?se2sJl)j=T z>`;1ygb1++RZyfKTz@!ZMh6Yd=aVSlY0*IKFKw0V47{q*Fl2_UI=zcs;?KznkFTc` z0rmvlJc#D2DbN0ayjy5bYj`Q-Xwn0E3(v*Rm{eEin$DA5+(4DF{9e=TSN+)T-dM`VrkRB+j9HMz{VvMzK_sY?nfxmA26oxo zzG6|KKG)fYKr#czoPM26C=qI#@YY){V+1y$W|nx%@cmYZvfu$B=GZQxjY48XTMj7} zc~~L%u#C%Zm?fOJVP=aIv-G4a@}nJL6VaIH8^S?Io+i&it#EO}bIGiJsP4+A((bOj z%*#Q6T%l<9W{9j$-&`Z!BvT8rgS`QAu<3(s9mtEQsBn+oAV1s1nm|-Uov1>uCI>yy z42~6eSA&tE#=CSWr1lB3j~l-}JR_wn8$}Id1ygJ{`J-y?{SGR%eaA@>FT^Yyq`9%$ zP`T*egTe0^${ZEJX~zd7$t)h2(8}Dz!!10Ml@5HUiwC;QD2Iarj*;s`TEk>&%V}uYcEDCt!KSKP-#tixm>^&BfHV{Pc!3 zPC%a1`cHa!Wj@xKSp!p{> }o_z=_- z;sArc2pXK05{o6^o*Q6WgNvd%2q}etXXxPTP|uzF)h-h_JxFKH+HiKEd{Ykyfb7uu zwvhkT1lq`)Uc`8zvtQA_l6Pu#BCnEsG@nIk4gZ*76t~RyGGBV=VeydP4dumx^HPxc zdg`iL2ok$AVJIk1n3&F)9Z~^dGLgBvG>uRp>>%6ZUz(tiIV zdWOl+67kOYM#h2A8l+$G21(olf~`Bh$Vq*>2miTTTG_5yh6$%1#3!MQmwuO!lXqz1 z@>(dvQ?8w5F2*r`%m*Zp(oPQl<4!G#va&CxHml0nb-7X!=lp8F!q)*_C16PGRE}Fs z3fIDf0uw|u#{OR93G3vHLjuZ3Q_pFo%?FVGv*{AjMS+IKyBb#?Swy8UIvKh2cIXbY*S{r2ptI(DIv zOoWNc0@gjdHNXsX;W5(P3Wfmuy7S#)_LZie@)|*GN2TB9Clwq+yx5}IpJ)K8{=}Ma zn0FH3pXah-;FnPh_D)`+JXw9g{`x8ZsFI~U1{$qBpsJi9jOy5z-&=Lhtyb1nYHgq0<8x24O<+e)Vl@gwx(M8S1Y(z zxP-5d?7xK|v@^Fus7q0~R4Ch=r5Bkg8rqXDT4?rPJ-nX4Kwn9##e%-atRNzj=~*-G z)EzUgVRf-LpF`ppd5pHt=p6f^rTZV`so8(WC>vTij4rrduV<>ziAsuHx1EVy)q$Ui)Ub50jLUl8f0uqQN8(R z^KN#IxBYC{NBUlF2spP)=wec@Q-Eiet~dsuX&~w6jRP+AFlSI1k(?nEn)+)db$?XLkpPzQf7Qy4c0z6L1X7 zKq;4+Wafj}Cu0p(30WF_xXfvgE4igWo29%MV0=`4L$QNq0%adL>woX!f6D9tjwHY? z{e&O(q+z!b&eJy*4Tl}Z+7oeFW&ZKmh%*U06f+3}?)E=di}gh9ckHv)2v_%2Sz^8; z4N-qw9NZF)QTdtOOFZupxfdU%yqxJ!TTb~&#&mFCs7-m^-Vr*Hrera!zBzn-k?4** z+>rQ&frS4tx=_9dQsKYkDQw7X2v*dUV!VDni4TEQx(YHqK8;$;THqu)IOk`4c4fum z&mEUp-52~9{EzYA*$Dh~G5JyHs~EefIWJU~{B$PnlM?CO=^JS5$4+`sZCCtDn?ms& zid}o%$?d(B2sFI4|2PKy`k4U%6jUywp&X2OU@_ehN9$YC@i7I?DrIMA82;4?0q2U| zT`8YhM(b)f@o=1Hj>(c=^^YNo(pru$*&gjHGfmbL83wAGSYvFYi;$-M`_S!KDyJl{ zZG4VWYAh2iEwW}Q8mvT5I@rIIcv}N{GJalz1pddpKwB7Zjy+5M z&jCnCKU1XD8YLal(5N?-8bNoegNwUJsj~5V}AF`yl z!>rk}b7ql#(=neiLcuwbqps{`N5`J@ggN0If&RzN0shlbcP z!G**Cc(E-Rj#C0&W<;Aj>JMK3k)V%C6BoHjR!_yH z!!eDCRIC-g40%k}al);t5U}9HKJ3UY!D1lX1R~;K@>W}70$b{zTX*Tk!>rucX{46W z6~70IpWy&A^r#6|U|+s^_O)!jNy?IWxiD#$#z*x4$1p6o2zHtF*1q1|E(>`kpZB1| z!wOyX;Qne?^WUr0SPPc}Eoo&<>`DM+3)Hx2jG0}#NAzm|t-)Zx==Gv{WklzQZKY?v zK9dx83Eq(x#bk)l-98XmvhO5~&igs&^|G9k7SHgOLSpF4{z=Shw|BSQK?qB`-9k7? zdN<|Yw@caH-fNf7{CxPf`zT?oqbw?6WQ=jgLf-KxCOpTgLZ*NThT7Tv#_s9U`h1+c zz{Cz;^9k&Wthr#6;C)D49$Q6gA6z6dRc-)Kr@O^@ncSB-rRmwgC^LmA*++nso z$~?h`)BN`Ssq!Kut-7U}@$7a-?oPhv=6|%L)Z;j}q}*X)=ZJbU@}U)tdBD9(ODvER z*nS;7NYP0daX-A<0cHQ}99ztr$)Ip9DADLa&pws0EB%2SbBQZ7ZTz^s3i%x&-+nzd z#g9pi&hU7?V`o5Ky_fM$CbXF)kb7ACT5B^NCdK37x8HRn%mgf7+>tu*|J$3(;mv$# z8~ce*GUBd(&t8~^Yi4jeh5z*w+e@tqbwh^&y%6MV-)!eX7@LDL?(v?MNb5P*(hTwo zs#G1SN~L2KB;em`_3Q20($Ta1w;c9|tBV%XfYhtFX~I-f z=PQ`y*;lM(3+~MaHuOojonZF6BS)IQ-YeQxTe^nT3={1sfZa^7&9N0TtI095-*J$J zNi0jmza(G_ZfVEDc4?ED2T|5qM}42tP3nbj&3Qa*llgKT(#XwSE#VbbfhHiuIs=|~GxCMFw!sJS=I{58| zXP3Ho;GKQl+t;%VF#bu!l4qO7X62qU=t|2(OT^T^v!v~fe)lJc4^6Tyv490?QD2D^ z_qRxV2b=que$*=QpVHvivfqjAnNqs8sx>r&3ciA5WjN(hX`9T{;M1c(BG)n6hVSFT zQdfrDKq;-#PmZCWQa8BB!+&~UL8``<<*5`#bhPLGaii9$#>b3hsV1B|$vQ7+W&e;b z1&G-&{`xDVVMD#o4#Rjr6rA;z;RomOcXd!NJ=~-@&=5$r9&ZOTv`glG?$^FWa;6)j^31K3)FDCF^6tF`D)C}9SJuM^C@G5ewQ{ zq>II;M_py3jN)|x!M_-&`A*Z|bgV*JX2=MNQ;U8g?~f()=%ux;CAE$QcWLsjRvs-j zaO9cpEN`x?U#Xp;rn5?Jz9%`l<7ZC>{w1CEmq`swlzr|yTWqa5komKY-a0MYIoDJe zG~`+4G&VT&taY6B&W3xHwzYeF>Vmo!ne$a*goJM}u0&)q_WilSz zZc+bp2r~gzP5vYXCHeC=-ZOvEON9Sjyj%Z=$o@Cti&Qpj4%iU9R@7h;!8L*^wKY+y zpaK6iXe^%gYYfVvNAx04nEyqVj-!&SI-q;r;Z8)UF(wySI2S~BIG)_&6h4O;-iabq z15LSr+@#-$_HiKI#stu=a4>H!?^JvHNHL#@uNtN?6-5&{&6EBnzWNxH}Ds)hZnD z&Wu*)B8G9}8a=NM7)A3ZVC#?Kl!N;tGva61x*h2rRkv>(^z8>F|7Q?_bGcvml>ilV zl%W4En3UYo9plJ4P|9F;IjAX<_^LyP`NSiE2r%C>0#!p~KIYKMqYB@aq?kwZ|S^EnwSt}YhAi&6mIC#VDz#lhJXVj{!GuNV4?Ed}_s{iGojk_YT-LAcMVe2Pwpnoc`zH~RHGziHO~W?T@+9&ohl!N& zYB+(j>t*!Xfzy6m)`ImZUy1gNiBOWj3_PG<7nU9>v24#rX_oO@*p30Wa((gn*|G{1 z)6m6ZTYEW*m9jxKBl!c6RyUjJgYAMYYVs|m7hSIwMsytdKz?`6z!S6Yh|1sh^X)D~ z|LI>&aR06}!A^dCB`B-J^E@0GcdK08c&(lIeD`1&TJ>K_l!hHWT(l)KY}!5P*(E44 zFNJXL_~_yK%Ze9&new_H`I72x`ouGkc2B=E$NNjil})@c58v98bXIK?FMQ|c?r=-X zLc+I>P4J$CaXnrf*G_*gIXW3lqJ|Jk`TX|66drB28KK4wmg{Cy?O1q{FEfE##u%#!GGDiaANyKHh-s2Ul`Qd4GkBo zlLp&bp#}(5htuBV3+vSq+KUTzn9Rk|?J4{945-jG@-2mnCKZ|WfWe@PuiO)6718)69Aq?F_J#$$4S zN91$}Qc$=G*=DhX-~_$Xh36s^X4^!}1S?yq-L1d+Ke9LwVfWv^xpq0=; zvUJ?D+!>y3Fa4YiqQh}tVeDXUz1In$M~v{R(&%4tqCjn~xM=ISprJLSjQ1PS5;TeE zoix_?Ylq>F2iQR15qO zSLN+BeuCsHYn%%kGvpJ&3-1~}(wg`1pC}TxnZ{`afw()3FVW$$BN#FAza4d^$Wct6 ztlqmGq$p~rWx{_-t+aQ~D-%)`3~AEWh{Dm*q{^DaOrw}NCNr5B3af0y-M1ktXwb+$ ztM%q43w15io!r@Mp# zMK$zggK-%p8v-_@Aews&-w=Ap&h3)}q{#6{3`E>V;s)WV!jq{6`OAj^u(^npvZ=|q z60M4#gu@U@+kM?1SgY$dcGoJN>Hv&sgVGO>mxZ&A*D@(Xo~Mv>wQrt%IPd+FS`0 zY9;{j$*jj(cR7n3x&Wv+`r3M#XZ9hKckV{!9qbECq+QZ+gnv` ze+XfV2u5+6CW+JKy}}XVHDoOD;ktfRSCBdCDgt_+uzzSf6Gvylffp&(pDuCQzV~YS z_w8EtOD59$+(okI3+K1s!UAkc%RrAs#8T7aO`IYJYw@aR16VGn}l%%F%`&$5cuhd|0z}IVua{jLZsH1c) zs3EjVhsIwZmqdz82$!^s=xnsAahnbh&M)y?I* zLbq-jV3&;k*`HJkbiod6B}J{L4;)D}Q}w2nVu=lXJ_z*0t^}2IQ$cbFIZFEi#;enm zaEc@P-2{{lj#}eHw7s3L0k^WX~a|t*fM*qtyiRu^~y<=;d z6s$5M;?Q3${C@xI{`kt`>lp_SJ0S+MMA1L@Cs{_nybn*p&s7MCKuXRz7MdU|mqMv+ zxC2>+a0_mfN0pn1!aXci*&np%JZ>p>AhQEX0)0%sUVXrU*N-3l;%HqEKPNe($A;f# zcVYk9rf!{Pr+V)h&c;T~HaX+y>eoseFm%rR*`?iO?@OeD5zL1!bRZrpvtT9#ZYkvf zu-^$p0*zIl8kDM*oJf)vdnm8`Hx&*=xlrcZP%02T4}Ds(IFyOHpiq0F-?#1e*9T_@ zBi(ukh-5XNI>WezD1i%x*_gw3H%h;!6}A&|KvLvP?tOoM zj{8-BgEKU~ADMpiapvnB-j`mlsHO~=fJ9sH-?&9k)EI1SfMehm`|C%hm~ec@MRzK5 zt)Yc_N39D4M7YT<%C8hC*G`xf!XxROt*vlju>~@pj%Ux*;Cic2GQAqAVXi%Ju`b$- zhg%BXE^#Sza^)Q?2@CZIn;`r2J8IN9`~#vqiqCG8Ri8NP?F7Y2j1+&ODdoCW5r9t` z-dBBoNeHhP8}Mqu$L~GIG}y^vo0DB*TsCtz%@q~ME3gFmb4xroC$dnz)8e2I_I-Bi zEv1=R@%k}>{d!1ahd^Hh58R%}#Fx>u;eZ7j?oJ!wjQtc($Ef&V&z_+dGHGp^5$JM{ zO#rYtaK~gZ`5B~c_@vNMvxwau4A(B#u`|NGhEK179ebEz&K_UU=Vs6ILasdJ=sruPoCgc$>&gC7@Dx9U8EFPxv;tRXsTTgC zkFAp$<{INk-5PGL4`z1b+{_Y=O9pE!wk`#)v8;w3MA+oXr!A4^;~l>gA8PT|y!ckC z9zQ1KTyb~kNrv6D!G)vPR8`Lnho*=m!+Gvec0D5jZ4Xz{r}MDcP_6gUO-HCRU;PL8 z|13?h#Ss=he^WXaEC2w(e_NXV&y;Rdr8?z+EsBu6wiH7;k$kl(iGv&uP&V(kiUQI{ zh#+)by~vf)8orKo_1iXi7H{H~vXbH=70>o}*|m2Cw&4MITWdm;#x(z334SLtXN`&huX>~RY)nO zpmxnjHaF-uj}tGZ5iVZCGtisgLw{N;V#fRO4rZP)W6XcvTSWegnRch!Z?zDpRx96c z;oA+oVHf&bVoAh-*_-YVl6>v;E}axLy>Hbout?xkp!$a6NpGI!@#kS3*^y8P$jfXU zoInjQ2CxUn6ATM=RzFt*P!>Z^!`>3qL$Ez&y}HAsvoC`=ZRl7 zKW*&Lth`ZfQknE@4xII0BH7vA<9u}=Lo*G`3n5}P}g45}C+_Jo7m9uF8r96&Qjr~$whFbJJ*;VvAFuy~}{N?H%z2ULKt zv9$u9ofjpK-gYdzvAA;){mW4oRRUc`=9ukVN@mu6btorcLJ|s`yy5gJYBZ9&!;&k` z)oyad9tpklv=D3gy`)uz!cbh9v)9QRYg>$l26^TE58`0+>QD6M6Ojmx6no~3&sfon zOKW`L>d0;0e15+Z1eO4F58bL4OqQq-WD|r%xEpYiG-yYU8DX7r`3WovWgxqG?}TW^ z9j*PgSeK#uzaU-mc=3A6d8`Dp%qIfN=_I&d){$96cj3t}Yh)yWa}LE6$-&tX!LFh5 zm7r}CFr-%EN7y`!2f&KJTwXFH`+ZXtYS z)2^ZRhQb-$*jRZ4bT744+Wk9pUd9{FZ0lDDXqVR9&^M*Ln=npH&z^l-&z94+%}>e; zqr+ZciMgCTD8FS`@;IE0-lfJ>k-O=!)|rZQ&<|j>a=l#Twl9BP8umII{k~3Un~sf? z5iv|k3&+HB(1CSbxhQN37K+pp8CrW~*C)A*2#a{5&w>GlXGY*Z^_1x33(QIB4lbN2 zirS1Cn9&6TEqiL7ww2n*o>!5ED(Ejic-V7{7@79Wo&v{$y9|qD(YRUXcjeZ;crzh>WB7 zrX!R|`^Zv@l#t5i>*M>C8O8AB6L|{+a$`mmdTohIdq2p$#8g3ZZ&|#vO^a00j*K3O zBuybBNQ;8cBMui%n}bayEGj8o<+PN=(qgR3>H1shc%cjY!8FX6v<_Je2nboJuphTR z4d0d~yUHn=cdd2Jc#u{h+vO1)$!PH5KH*BK3|XhN)Z`if_*U)5uoKpB_=3*|fm>b_ z+*6YJ$)c&hx=_g?PpQ;aI07={dW}Lo0P~zKtR`eVw}V#_cyD}{d4GCu#?ZWQ-)pbu zaGMScd^#>Dyfm)b18)!;iC4M~1V@56VCDo2MypVR&8tlzd)WfGV$5O^aTl6!HtkAI zqj-uK^uS!=YChDX`9u4k0*M56h$%@cE#GL@v@TxWuK=xfMU;WyDw;8XIywf0E(xPB zl_FLC0@Ynch2Yn>s*UVT4okX?J~0$~GpW$mBCcFvir-11Ug0ZLks^4t1Sq*}n}(DOLV9CGK!6zViW@0^Uaqb&C!ql-IW<&Ci5M4ndB3i+{p8oyda~Oa(E`L*j>Y2$#EkSmj8an+?fY+{MJmj0tbFp=^s7lDCY;s);N1X}2 zC~Y}C5v05v;E23A&Alc`>R$4<(Xt`WOW)~E_x-T-Bg&EU_eDAG# zqtyt$hAvBG6=<%6WwV^YzdMA8dINK~#hY=OBR85=KI`VjNFkuVwLMfQL*;u683Uh4 z-c?s_k?bN2-p#T~y4g85FCVeUbp{I7)6AT8d_QOBR~;7_E~WwuexI49`PCYvd@bgn zS~|Q;xjv2aDW#=NXjWhax3OAALHz_I}pv3 z-Jw(=SG9`D9gSiJ%L2MU>h(@3Y@K=JU9v&skO_;e=H6VQX#*;?;O0**oCWwEw1snvY#8Y+nm(`?Aw_hzH?q-kEH8)hvLg zkZ870UW;ab>nIamD~Y_b=PUD@#o%7jvwHHsjlSqZTQAoJ$ttHlWJ#nqPl_=y99t=}cUt6Et`^Eh^@wIW{n}s1$?b;)D_eRC;lsuK2I|&Gt2py! zAid-V(?u21OJq?%n?{!%33&BNa?6jB3!183J$tAe5XVj;EMKb;_QZXDQ(x((9)^OkjZg__bvarzttUw?Hys(Kf z)=gm0E&1OT#UJ3y`|6$~Cu@c1hmw@&T9_xEnwR{0b9nZA$l~i)r|D2f;Lv-viF__P zDn!yVcU)F2f?se}Scshy-flMpJ(z+xwE{bC4$fZ_kX}7lA>@kiX37mPr_vTdpVwZr zK7-2e^%6l|&{ljmRd}F$ml%gSK*x{$0B)m@SQ1cm$Z^7BUaU;U01?d*pClDPzG}C{ z=J?~<4X%AzrKP|0$&|k9kCDA9nNoI6VbISNOh@&lN)AW~(#_i0U6~CjE{<%VBQGQT zGB?B8AZuR+vo%=Cz23v6sTMbi^6*9)RiPHOi$MBGi&OKjdNWLjb6nJ}54JT{%1LJH zR3SsZ9oyPZpayQ?VAF~vwH1bsdIV!c+X7;wKAQbdWrj-;G^Ih{kXnjZ($bk$=srJ_ zufvKFIUjzs{u-n3LJkQhp9rEd)`tA#d=Jk4E5bW!b?$T-YsvQ3;3hi@!NvsX8Js#@Xg3L08jY&@I!h?H2;P2x=E{FloGk zHVuSzDKqO4f~ut=D}YFc3WkH2Sm%%n4m%2>Oz5UyYFd`PA?g=Q64f~_;4DyN`FWkI z7^C7k;w;@!V@AZaEZ8Go+hG<5+EPu7gKR#nOxA7Jx}u}=s}TftA*nT%bc%qbIcaT37y^p#vTB3JcM zOvmvO^a(YD={W)!iU!($(~(DS99kp<-7O6FA&t7)>Vtp!LynLWQFn_TWWmbNIpPEs zX3g&>mvkgBccd63r#WN$5aOwVbWj^`%?yLnieSZz@*zk;!ii{ATU*S@e)d$;yYUbII|$A8!4<%2?2nPBWtch zQ&D{71sO))hi!EB0v{bSYp)h!86!DAyB*Y3-9W+_w%g#BoH?rBWadGe1$vPWT4 zc^$RqRo%!-vrl#lXu4tgMmqTe;S@ zLM$`})evQP(-$eZ|HVgNtVp&F*Uo_upPDw{O{cG4l%UGtq|^h+X(3<18lt1z0O62?HR1Qwd{c2>UVk>+}JQ0ZZ>jvMFpMq z7fD`xG)Kwj>q0?1qoa^=iDolyF{IZSq18mTkAg>Hd1%a&Bhb>AQ{yZ}!EQX~n16Eh zK3Z53pj$?CBLU-;YW@H{hP$Y!DEB3*WjKQ)COpLwfL`Q--j_*A8Pk2lLRNaX0m;{S ztfN?j?sd=9HDSqh^%hDIT<&2sb4%K)k+{(bt4JOAwkNkgUqw z4+I?^PEwZB2IEh(itrB6vD8mSbXv%}0+bEUk!nOcr7Lg2w=Cs>MONa%j30N#sLZP| zHS+esQlHtqi0sC+yq?hk%VH&?0JejU=-M(G3h9HXuva4|HhKI5VejQuyEAyP6EH%j zw#G3cw#yB7j`vFbmr$z&gM&tFKMXcoBiCTmh+Hmc`WQxXa1tSf%!gEj2q_D&T;w2u z=lt%EZvD+UBnfpN!+~=4ULJurEC4p2v%L}|-ljDXUVd>X4Zjt>sPDDiERZ(WXz#$d zF=N9Y01S4kEyiqTr?8@TBrfLbb}Qj1DxrUHei-G~jfX2W>2Oanae0Z$e;5IJ5`Bbt zokHGdc@r$fVn2+}t^-WoUf*DhN-8}k1)x$~KZ8%)B3MGS31z44(j~b)GZQ$q+Mnvz zTmOb|cFplK{@e{y;NEKz9LJ8JVChtc(bPXpZmoPk2~|sY3mD8idY17NZjBTtxGl|h zM+2Ebf<@y^au21AEutc>PbCtEuv|JUVOdX^S#bs!KB6aTwy>X4ZQUN=+W@e_XS; zf=jMfZ;f?XT#(s!_QHwRE#o4ZjGLahnw|SYAyf(i_<)tAIbk53M$BQTOSp53(*tAz z#GzPaTT|%@QHG1p-2cVyU5%FLCuL=K%4FCc6{qX>1j$on#m>5X;DN?0 z^J|dL;&8Q?9dkNn$4oTEsDGK>!3e-FjW$=AFEAs5a5JqQ7{S`@=iF0T)ott zqNrAi#P%o^4QG>HP4)o{(ehgs;siSDglPkSw{#jeM_G`0L^dU7d3HRILm>NW0e*I? z?`A)uTf6O?%p3UHcB+;sFxIQMqczN=oyR@AIKlwIY#}>+BRC7VfN3(!(P&NX<*oDB zL6Iz%4(6+v3+M+JxZGa7kDnElqx39Ey=0`}d(A?*+z~?)JYLaPDlN~ac|}3F89dR$Zjxa^W96p=XY*((nq-svOz8vv{^Mr(N4`%mV_CV5FxS=W z6lZJQ#wGaMV0AaVT)xIkNZy_&DCz5b}iZQG+!t;4pk0eI(hgY z>X6+i)^-7HM8qCt@B=ZjmD~rTElv@u-cMuuZUCjTj&juP>SE4mwHrMiI_6Fl(lj2O z#;v|3p!#7zT(L`}7G&w6WnF8Prok9n`*7lgOV!;i^WCgr8oOZ43ibM>&=enZDX6PV zie69p1FOb9w+fV)PiD+@=gg2UH)a8vL7D+f1Jg`*h^8Q&9sgoAtD92SV3Uxzs7I7$ z`hK9Xvpr=3=p>}YFrnF@Y2qB_yvLycL!275WkWYqr?gMlgl{$mI^S_)&Ue}qG7nU; zB%-v^U0MBrc}y?xXss_-__%AOfk?VS`7119gJH7tv+-`_=RSKqBp*Gvx@bQzH$XU< z7173&ST3-sLCGb!{qk0!@$V4oTWmOn1=To18H%P~nSe!FQL1V62V`E8$qQ?xNZOq` z2(q(#xERM-&MGd*!XIFeo+*&Rwh!xd2np8%ZxQ_dNSEe`T>@0P0SE|oT$oHYsWlJ% zWFeSYS==eO;Bl1)ks1#6)UWO9hDXttqAx%iFjzwM2UqXgQA9i2#SlHL$JN^byWQlg zt_*12V^=km?DlYAk!lwnh1>oSyKLW8bd$V;y-f!`d8m{10jIr9i?Fd^k$AE4_OTZdZ7!2zy}%+y37wjNh8}@E>ih@mV1g{Zwmb z8p+0-O})q(90ReUqM7doG?#?SJte2_)cE(X_2JgHd3Q?uxT)A|w?DBS_~@A>yGm;) z^cw3WSV)Vg4{egfVENW+J}wY;r&=yt`u3G`2Lp_PvQ~3VxTg_#e?67z^%9GlEqyJg z$&`y6T4x}e#7Vqo%@6g^6%x68TXeQu>w=1^_exz@DmMpw%a9r+$fkI@+=h0sOF+UE z%Fb?cHk^<~l5gM&xNx5K8HRI%SH=Akq@|bt&8d+Zhl~nTh;U=%=6KZ&WLn^_eq5gTN;F;jWjk;OpWfv)7 z24b{Jd}mmO(b?mTZqcWUyMnXsDtz?tlmZx2){!|FMt_>a!C?dQUc#qX0Ve=u-|6T~ zb79S{oXOiH&i2YbnDs|DvELwtACeu^N2p*Wf>EFf+ce({z%SfyKb?+pT}f9FpgZ-Y zYwM@!2XC@D>EBtw3gvJL$Cif#*7sbYDMt%MnZ)MaKSF~c<*%Tdv>MiGrE8LqU8XBK zF#?@V|NPIgLm=Ubs32wKTnA2GZ}E0^{!Qx<-mM)vrCF1v^P>6Ungr1^ zJf-AW3@h_SidTthrMb`NYs>Y?Nac-3@P1^NjP8`K?ow{goJO;Rvl=+EfiF(_sFEvwBJsqMldX?JejZ}(RCuM(0^{s@_hY(o0$X|C ziTQa6zIO9>3695!DL4m8_Cu++diX8m_%W9*NVl)a4thbbhB_^h$yEBo3FgvjGwJ&?}=MT=TtE%hdV_ho};mP%$_qjIpAV@km^v_b|X#=ki5)bo7y?)5+~{!Iu!` zJnqqkM!Cn+S4F1e!U*?YPwW!vlP5&Z(GyzJHT{W=%z?4$C^k=C?a|DA~ z`tIu>fQ=EU7(V0LH{5KDuAoo;{oKm$V()L*u-E~e_rDdX^UOag{j>|b(9X)-gd4t8 z5q5MzDDW}fc`YB2@%8#=bvbP(D9?Gm<7+`+J(PwZ`y;`Hve2^_e=GmsT#f0RF!9-#daKAI#6y zc`tgFK~0ErS)GKMdw$ze1L+p-`39`>oOY+2D<+F{282t0Ru#V2Ez1pM^9lqe$xevI zGsBKKD_;MsB?PX*cFStn;3iBEIs7n}c7lB=YKY z72BYbi)hHvwSQ00p3n}d7gUEaU^!7Vo;F;m9~Y?;gjb&YJJ%yvj*dCk3Vz5n&w2cP z&yuK^o84>|q^voJsVkt)PIgL*C!ymkJIa?9C>d&knTg{KQXlXaF$C}nu$8;4gM=-6 z`wg4B$fP!W4jzxb3;fCzX$Q>oK)1|IGWt2G?T{^Yxl!wmr;4@Ol;M|RGmfdMN5UTe zBFM%D^)R+ch07AeQc;bvbkXD^{4IrnSwYc83-RC-CmFEaF#+}$7gPtzVo?C`}3;^w1gQUYwT^75h;`#nDx1c zA(k@{UsX35$R8eGJcQ5WPfmhY=ub|HSLpwoBw5Hsousbht;V9(auI#iSSAN1Az~R$ zgHq9>quT5uzBKn`A^3?enlb`jLl9nqUnjn^?jp*rW}$0`;GqXHk3vQFW$y=(>TcCa zEwuan7I)>A^F}fLtwqOV=U{i}&6$si2CUtbUyFaKO*Q+HbDV$3?F}pE$y|lhFJ7<( za70Lh+;QjB6nxk6A9vzX)KdZ*i?9|}BI`_F zSOOaNw?q)Y;YsDe;E@G)YY#UV$>>Zf`Rj-H+8KcQi4M;VRgIQlKU;ju#eTo)}}A$*!*>ke>V6sAf2M1LEhY8S6Z zyM1N0Q1OS6LAowOL$}AwdbnW^h)WOIw>a9U3H4GrARkw^#!jahq&WqT?tBB}h{1ft zugh=UEcwtj37)o?yEzS<-BAgdolpWHv3#dCcg|fu-SvpEZ?Vf(0KT`nC)1U@Vonp% z7e0m=z2|M_ZK2IqwMSdB8okWs)~AiayJp7hmJfL}+BeI=VMjK&3+NoubKtf&?g_7l z;;U70AkpV(o1OzxT0PD{6}#r4xW4+81JPTusxvcv3+vaNcx#Vew$!{HqrldzLz|;_ zc-zfG!|=FcK%**Y#!ZYe_(Yv1G^BhiLlWw%QW|TaQ?g4C_MwRk{D}#z(&B2sq!(8L z^Rm{kFbk9s{qGfCcv{QB0vWOAB1mju)rhr;krxG0A`PJ*w2-trRqIaSth)Z9;*E(1 z)Vm~(lP7D|VuL!&U5iXH&6ycVP*wvFpX_^9UXIN2PC|qMcH(8H^Sp$?Q$6VdF@8PW ztK{Xs(4)xC70o={QjBF=l& zf-BkZNCHsu=(W8OpGY<+-IuLytdRu5u%L4p-Tqu~&>|Lr-0BK!k<_@AFi$(wo(niF zUDlr*Bu}~@F_oIO=_?cIS&1z=Rl)WMF7WJvk_WkIRZ`&Hz*0REZ-j!*T&)MZl0b%f zKiQx-I4&q+%G%yzNpe)dWQ0)wq|C*Xh_$|;DCTU6B#;82S#w;LQmQ34WV|FZZ|s0~ zk~AFjJ4=vVa*eCXVIN%1GEXQc#kWY&Avo+|=x$eOeN$n7=ttXQR>=JzVxPEdH;)iy zBq5RJnQXXITbo2WX_Hrc(G&%@eE*{yMK%;RqPAxp72)|(iy`cp^EX#O%tHmK3~f&) zPpTw~AklDG8(F%LGKEO%gg7DBJk8Bt1?^9_#7|l*N~#V}Y8}ElyF!(fZ5?6x^Py3+ z*eTgGs5Qe(xQ%`3uImLYms~@*-dxHB4EgQ}^9dquE3J)WH7e)4QsV%ndTqJ%>;%4H%R}(qQ|B4`C#QT!RAVeeb27jEpM;Cy>=dK*)$yf0kbaIjQ0nAv(7F9 z&jmMaj7`~K3?)$dI%Pc-qr5TQ5%puL-Xkp0lOptmyw<3K6Ctv2G{!)ZM2qdL-#obR zK;kS#^v0j#g)S1CPh&ip!gLx*V|w_cT(C=?kUn8OjL^)YK-!*MvRa_QL{U2y zt|j4O=`fcVW?m_p!z*EGpDT1vfO5Wr5BStPV5#fzzkTj64REGh4xOvwbdZTSSIF{4 z+y~@>q7b=|kaEMEMw$M^VWBHuaAx+|_3Ruh&9g@gN+Jr#hgp^Mu*IJeMjiPz8hlxm zaJ-TUBND+&O~ zWSM1yRj0U|X%{7E^_aE)TZ5Pxn|ST4b-X|m zUaUo}6gv_28o4IVXnf3Ruw(IolBzjOwu)dRptE9pfQao_MVxdM}wC`3(3;VP#KwFICwrxd}+6O*-ARVFqUT0Tnq-!e`1YK1A%w}npZqPJV&A?2&GOR-km2S1oTLi{;86dzUd@mK2psi0kbH6&iymVOjEm`w=Jngg~ zM8B#-l-Zi7FhRUvR*snnd->K{0&m=z26$({Q`znF zF$(;wbhGb$pbD(C7ZV zl59RnI`C7A$%hmA)P^5+L9jQHr!o^<0TF=oE~gJ0FIm74VeO~Y1T?9P&d;^bJ)F-C z77wBJWbFrjaa`VO*zb?7KbZ&Q@@jD29MX*W>WcU|wY(tZ9x;__rMTS2VB}&WCd|;j z>#_B~s6&f)`GX9bE5q0p&OY};8$LB**fOk?)>|f}4nZlvvQyqn0oscOwcZN=%iEsH zLA~B6GVce7zv#_qE8dS33V?0!4KDIhgNfI{I`VFUe*k5ia>{V6*s%v^8Mz~GcCdPj z!Q>JTJ0f#tYFnzZ*RN_jI+UT5J5DBZMomk#C9bB&65mz=yJZ%mH$}b zV5s)x@^{mTX&bhYW~_?JWYx#`?_ecJyuc225|sCdi+tt3FxVbEj!ygSa4@WGfQX^< z`8^GsMu)t3DjruAw3e?0{unO^^o!o68a=;#p$NN3Q&%(2`+oTr9%k02V{krZ(S|6my8sFD@Nte*6UFwq!~txU}z$ zmvyg8b`p`KUJcl+O%rFjM-gkGTvLXvNH=e3%nAF_DO@|4swdU=Rlj=z zv10dT_$7fwA7u7z+O@O0zW$zMcwcVK3|p_)NANI=f+pVt@Sgk6ZtHEqKa^nsdK|rmtO?r~_^QnIeoLlm{x~0Hpb6NY98jK=>)dd?};1xgsBRv(6SbIW#sydlSYF223~tO63|Bg zHg=cDOIIj}`#jLVWt_k)B#rhMVh@L0=i(W6HM2<*Kicx-%1cPNZLPE!*fyPA1yU4`%b%fJiv)K>Yri^Vzsao4`jb8r!%{A=UEdm3TRAQT<9{nczV+%%1^UqDq69rqt2k-uu2y~pCpBE%OE<3 z>~g0a>Q!PMA(uk(Sa+3UhD z3sO?yz>+zQ6_xNKnrvUBX`VDUXa%_ zEn?16+=Iv-7}h5LA$dlanSG!=W)Y{L$2QN(!?29mo=XTxQK(kfO-$uv%08xu&iYr2 zr7@EuNax%DWsrS3DHr}vJE~dW5Pc1i&cYmW8R{SJ8=6t}s)k=;{ddMb>Zr!K_+o)P z9^f{S66%8uT+dK1vTNoMW*zZ(2ci4!i_%PfFgtxyDI{sX9tF!F7`GY1`cV#|B^+RA zejBhuFeRA2keK+Xte#k7z(|Il?YLW0SuV_W*aO)DNdu}n zi?_7$s4D4JB<_bWg;rI0#K1Qr3cvpWdGjG*c82Lf@HE@fA96=aaa#%(F4eJ`{@b(l zT!`eW+WId+WSbwJFDc*th;9V(i+FV;A9D(Lg*v73y0lp=ry_zP%2B?z5Yi4I`CHem zL9`io!GO`y$AV^GUM+Dg%%Ao0m>z-Qm&WV;p+>)j(!!*1+ng@&QGGfA*k0`W9|*{O z_KvTVRn1u1g77ZzmISM{iNNbN!j)?72U;NuiL^nE${E*77j`JiTZ$g&VlOoex1=3J zHqvY{97mL~F(A_b-)o5;n88*7(R{sBqulGxyrnEx`z!th-UH*FUDSzu?vHPzTGp@k zg|)njMKkVf0F+XO)4qxexnmXGmw5&-7bTn$wUW;S(C8okIhWN0d zhtm;m6P@(FxK!!;xh0j~DY&HE2$EicGCxq{ev)p##<+e4Q^Lm&2l=vG| z=&n5fcKFP_@hYVjYw=`lJ?GC_f}-w9h)BWq-fH+OFSZE1IAo3EO8K^6Si+`Dc1cC^+^vMw>67 z&WjxrJ83Pr{yqWH`5@CM(mS*Ky==Vm-9zXwKMmLL`48a#nGOH9*yO(>5q4H4wiccy zj{i5QNlu(&lFM(DBI)<_-=cv3zt8^UIN5*2K>qhL8=5#e>pTCyZ+~}sud#l2dPnX%eTQL}qQ=Dv z@LazX3Z2b)$s%wyjmGbb8lZ6fi9HY@^4bC^O0NBGZ*~AVx=2Xt&A1jB>SX~wI(%*e zF0CJDGifA*FlV3FLL(2SQ{ByMvKd|DiYjGhPBLHvemlu`Jcei7F~kNwr$^dz$kVav z9Z>3DAj;Of@a zWKPAzacMB*0rddl1EeJGF_s*8r9r-vA*ZnY6d&o zo1z0O4I79T`oGyxs9>Gr%9c-Hnx}my4NM?|ix1+dkhPA0F>i zZsRgNT+Cg|Ok5mo^Dn zf$3{o7kvTU*0>b(ax55X`K5$!M&EF@01*$qq+N)7gu}%F(YE)Ewfan^jJPsYLFzP z{~1A~6)&#nxHZ^Rt?Uy~y^AX&dK$NN5@jC1-KzbL)j%#uTotq=q0!o{d_VXvppm4} z=u56UqR?{36i~AZgQ!c>M4B*1gZWw;i28=enMLC1Wfu_}$&EPlyBGHBi3>-=O#WPa&4< zt$ol)ie5Fa#tO`E=vxcKN5>-$S@s}ct{MVp#K0DzL5pT-HA5+imrXh|;KZP)`0?KH zS&T9moIs=@M-zUeT(4BK_*b|n@62mV`6CPJ+v=;Tk1pVU#vP`-dpJ+Y|i7ziSa4N|wL|#)7sx;>)_nTDE6~vdC z0f!7VPhyjGgdN5zYVV?w4LX|V8Y)rB0Sx{|lEKDOq(eNaAnWzF{D(yWnSmHYDfh>A z!${+*2U&X!Op_plWm|zjm#&7 zX2jI!M5|x?v8|Bkonkz9N1_sLOA~D0&!ubZcAWYSfb`Qu#8w!NGsCAmZg!RO20buQ z?Y&%aKu1$^WeCY63A8dLj+=lZeq<-AWP({Ql8r`rwKGW}+h}$eY{o3TtfwX^0hT^R zE=s5^j`h-U0bR=kxo@`6s0R+!Yq4Mnr6J-MsfCxq=!edo6!dm_U&W9t$P1`Vu|7F5 z3+GZ|z`nw9AozGIa$tBtAm{9NZo!$~$Un--cs($aZnGWyn{Sit?sz8duk9qk>l$G& zN;tXpb_!@h7H@O@tjIH|GXs_`cA6Vl(8ULV z8VPCcEZ(2g+}Zuuur*5iAR%pjXvP^^_J=D?SpL@BCYx3uMIstT_cd3XiV<6?F;0X@ z{GKMk()LfjmDUEPP9S4YM6P)%!75e|;0v?}I$N4p+6c61O`C>#4b(hF^#YY6#Xp%L zh7OT=s5L-lw$s*vV58Dc(CXh=P$>WPA((=;I{;9HA@v@N2{NMn7Li{PI}>XDku%Sr z9BCw-XWEOD(y*koH$=BBH2Tglct}C4V|ht)qRdRiuZ*4XXM^Q7t~!*)7H|V`G?GYK zjT*_9d1+(4n=gO8VFB7CY@qL2Irip}0HI#3#g%2a3OzT}q+Ati4pR+_8*jy;RUOvn zET->?CERCfOwC|5f~92JPMo5#Fc%pUUPo^5Ph;JZ1Se*9bxTi`ON;`-F<8|6_XpzJ zq^48s0g3iqSP>sD-xE#hh{NVhD4re*rVA{1*ErBkm}WvXSlAL1U;i!hZRna+CKMCx zQoqg;-qPtgmtv*XEY@#dappvIdYgJXL~)vS+O*C_r5=>m6;ts-v_Xo!S0|LsbiVhH z;knU>zqm%(?J{Q@W=+}}dy_PwSTtG`O@p0rTavmg>xa_YjAGQr22}0kGg5xd#vk9_ z&)4%99vMm2B{qprgjmEq465ui>Wm8P(R-IGL+UpO!^Sd3tE{4(x=%UBwzwPdWYh z)b|f>OB^8|hi7~qX-A1Mm9HK@<>kfA@ofEkS25Z={9>{!^UiWNtBZcgF$QT@V+Zt`N|CgKzSYfuI zdXG2cOSfymNyldW1c(ytmW@miY3quU3Pat7DuC_ptzMR!`^O8Aik1$D~EgIt%wi2P}uP90W8IAh4C5sket4YlHyAugzwcKac zqt;G}xMvRC!{}8&uBeOkPM12P1Y4M_F1@xNVf2D_GT?Q$^LjuVr=Y!$7T|_lfc(LV zV2@MZGtaKOY71Q*6}(iG%Jeq9tAg(wfMUCav-JqS$x6m~WM322eqM@uv>dxxw}Zu}c$UD4Fa~evSPiMCE zAa-St{H8U`?q7|#zIWGSJ;3uRY_r}5#Vj%YrIK6Em0ZjOYrMY6A`wHDrcwi&z*R9G zQBQ`U+zd0W?E75z|6F2yY-+tAvCcNUQhhgAVYh@a`2XoMx8bWik;MezK5*dF$%B!) zNh`lgSTXeE`W;i53{!JH%k=kw?5$+<8TW9+$U|%VB3EHfbMs0Y~25=TJTAnagB+@vhj<$X4K`p*6ZmcUEH2>+= z3CL8;-!K9eB|Sgo3Cn*l(EEm%wl?Y8-0v;08Jv{waKL4+VK&1)aV>NIDnrd|)cWY` z2-WCbq=j9ahvYLrjhweYdOYl-lU`zwk_M5)!y8Uk&YB0$$veNEfXSOaKPG)pw#SQIj5T=Rpp+Kmp4getu1v}-d zRmy4URpZZubDu$X;@xeE`JRdiRPTPiX4Bi9jF1hIwNbVC`1GAlrhX1zemF{>c8#W6 zcfLBCTNL<7-#dG1!rg_C2M`UDrDQoe?pWs+hb!ndXDoxgFAbN?^ zsD+j*4VyETtqhyVvMSs&(Q2VfN0LMAFLW%RO8b+E2P_Z{zCZnIHl?yFuzcD!^rls^NI2hvX_lI-OiO|Z1} zb9hCU!b{8AP6Wq%p&sZ)dD=MdS z@x^^A3oyiaCnZs7q%ASr%fc<*KcHnnE`QSsBDXNL?QZsfoLhVQc4O*zJ*LtIc{Ij} zLnEFCHzb#0NLa1FwYXe0jF&Dj^d4+%0St`R{EjweFYVA^h-}v$ zf~yjVGsCGc^k=2xIy(8yZN&Wxdh8Iy?7k5dt$`fZfonBJLy|$@iQ7G1%kE?`v-7V+ zw0OmWe*q1*7Hk_Z!PKJ|lvEGj)X~f`10V&xo?Tym7EW{J=OksI4~F12YH;KVK)Bb} zWVh1X4%%MPay~RS<+oQ0!k&T14ACvCsYRGJdOmF_fp`Kbm?nXOh;l{;%1^md*>LFP zel^k(Zge+YPX+%Dpi{SOUzB!TadxjaeQ%YBg6E^@Y!FOWyvhETS&NJH7=TO z2dNbxy7Qy0Ox`o+%vhGl=T^*~0-0W8iR1g5Wx)J6x=ef9N|HKj?=xhpB;kMZf!qV3 z7G)PG!e9|L?SbP42=ke&5B`braJ61)QbR0Ljao z#Td8|G>5aNt<^(vG6G_l0)q}s9C^^97#V<{jNckaGR2w#JsB5Mj8epn0{uI2gskA9 z5-f`~K~kZYn&Ur05^?XWr3^tXe0HgSq_y{z7kBz|O?^;9_bhGL3*)~*Eu4h+uvA@f z@Z%fop)Z&%a;2v!f^A5Na7NUgwq6Stn+V{OJUU@Wmd8GSz@no{ZRDzZwanlpFZ|Pd zZ8ij@nrhY`{~D;`&DE5h7If^p*21o|8{--sBmN*11X;d$kI_@^MK{vQ&VyS9NaSHY z8xTE?xFWIZ=HWPX%^!)w?wAd#^|znks#9>mV5fway#aYONc2yef7m~h>RT_!!U*}r z`&>3A=m=(zdpcU{I5Ve2GZ!At%$1YYc$G0qy@O}N8panB{k=ABVg$;oIdV^}uG-bQ zCl+8OX)6on4do3INF`-%>1t#xZFR$>$OX^}XHe)FOa|*e*Ca>5M`qFjWntaSLsB+g zQE3uqgBOUs3M@h`h@G317O_@AxQB4JbUTk(?$Z)RD+jXb4W4oXEJ@Qh$W~dJD=HMd z9%R^%i$PJy$SBS@fa7FP8a?&YkZ#cQWz72(8)xt(6o7}o zYsEP}uzq1ALlDpWtj3XdNNFTQuex2JnFzNYA62w^_PbbNoU}X#v3cx!&_}IR=zK!T z`1vOI{yqcl^`-5zE=X=jd&k{CcuX60d3vLx#m41qS8G<-@NAMr2R*U{8_&9#vf;RK z?SDWNLWbGiYsiDs5w#jne{tMYI}8bXE^c%(hukHMYep=mySVbXYjRUZF{#1D^wNu+ z$?Pd0gzFoX#4}kvlJ>D>h8nc|Z!^qJRglBQ|-GyP-WW4D&mPm2rIkOwbfZ`hmkDqa; zgmxF$lPcWjcY5)3V|Ebc8Aw`w?>#ZK%^2MgST?ScbwUM}Tx6;a4^*Zsrwk)vw99_( zby;0V;?mo88#jhzQmRWlnbafzRHN0~G<)GG_*k)$`#&kipn8UyUpQ9dgPgKp5&acJ zP^Rb1MC{VgQv0neq>9j1secMwbB+PC!KEDcIB;;+YLL8fTeQ`OCVmeYuC!8_k6j9a z#x2swo`wUn#_jC-Q%yYnsbc{7023@sSy79y>n}%;rad6>Q>-~pJ|VuPPl0WG@rNA+ zb9>VNU^a^F&)?jl!P;c1o<;95u%EoH|F!RT``WX3eIZmo9{1}Ncaj&g)OppI)SH=T zcF#%ruvl$553ns03bht2vGPaY2B>~scbNm4=bVMmFK~6s5L9TX+Nomy6AOId>qekhFJF_9Us`e#0Mt|@9&B{!%`T#MGpN1 zk)LMrT&YnvkpK_D2hn#IiVEO|cQ%>iXq!5e6J zlHwaa{vWE=DRn_u6)HicM{ovszq4c)IfDz8W=T(m$%Pe_vOEVg6N5QgKypzUcJ4KC zdG>@DUX2ceh7*hOlqX;!&Z4%z^nQ^yuby(;38K*XOC5o|vI@4+ zONA)GS2~5pfKPQ^kcTopOMJ(o3K{&JG(smhgRX`&h8m~=>pN1M>PhhJvWipXM1Sp7 zE#+A;8Is4_QAJn}eBMq)VPmDFd(Lc!xsot%IhYz!%1w1ifLl8KRwV_&>68f>IsytD z!^7Bm7hHr>Me?F;nI?|A(+xA=-YH1)MyB50$g7=ry$7LD<{K51aW-d1eE~}yhnv~@ zbqhAh!`R;x;?^RDK-_1BIt{zN=;}G>B1F8l=QRZkkL{_(*=cAmRVHMUXsX!3vu8Lo zo@s!^g^|lcoQ+tEQi`@*l0|PFzg#|6hFQ)6ZlXy5Zp?zjCyGEHS+WPczpo@pJyKFw z&l8$(FC}Yyg9C~TJ6JB&2n^QAsz91xTlXIR#2`eR^%@IXXCi-Y0eU%go7|oJ125SF zgCy0)A*yF&aJcI^J)s85%sxb5Tst>i4_pV$Q>T00C>`dWjnJngAs~7qaxek4zjE5DNzV$;;bijoL+{oB5l>VU7IV9wSd&-BMb(Y<_01rsX#pym9R*_K2Zu-E7u#6#)2el3P3RMdd-Q@$ zkr&0iz0t=Neg@Le!{ZxZN+Dy5Dic5c5!Oiwf7M@vH#?kW@Aual!O4}Nr{#e2;FSF1 zQLn0z$T?-ZE4vx1JAV0IXQ+mfY4nW3E9W-^S)a}D?H{ZH78w}M11OIvXt_P4c-g6O z_a((&`N>_(Dv3eX6rxv*B;=sNUzQ)Xoy=Dw?em$nFzU}FrQGL^?GwYQsQ%qdhAl-K zD%LVOG)KVn7^7lX+~{2Z=5`ZuI5eD9iW^KhZ0lNQHP!na0tmEu9mJR7uf>!ws~{Z} z8PilT)J?>~uO~<0#<0nPC?cGhdNl|AX7z;WPUCtJ=GvAA=|LjtDf3 zRlCUiz5N=D@J^S|l{b1Ccc4i&d5gi`W8tN{eF0c6CD?6XOAXWeIR}x1P4NnHO+ChU zWkD&lI-N>9^>x`&m8J28IJuNa*Ca-?oT&tCm$AFyqn{n}%Tt(FBN1ErB0j!&_opJF zYv2gz*N@&_GA{U~6jcXS=H{x#KXD@Yvvc9k2E)6;f#So0Rm$^t^Sh5A1+**r=hS?B zI6)q!=B5k=>3b&PsJKK>pEU|M0OFz1Bg)al(a6#DBP`^0A#^_78Mw-*MngPDp4y|T z^r$E)k1*Ic0x_R)o%)7W+(`!5AmVsDy{@i7nS)!HiV%0t&ZzU(_k{Vb2+t>i=Ea{5n^TI$X!h z3Mz|v1YJKlc}LZ~zlFVIRLJct`s9Pm$LibSklLChTPUL6`fZOoX6Qt}1y`dJBYC+k z?DVeOk5({SY zAw>*2hsmEpqP84rAg95}z|QHHp80xIOOsg~?u3uxtq@KGsHI+ zT-vEFuT{@+h0HjyW1adsZ0$IQZHBBVCt<}_h{H-`K?}epKf^e%vb_SA-e4@l`E?Zf zC(@p@RPai!4q*+a&`G@fc{JhI`%7C?<(;YXmvhx7Qwco-Tek#d4!{KmZO3)R(ce-t0%A#$ZpUtQrD-~pL8kJ+zz$sJ z`v#MNpI-Jhyav@Trxf-LGf~~RcfkK+pBbE(%HS3 zfVo{#b|lAz+Eaq3ArceCX|xjG#Oq8O#|5jXW2N7msrW$*wMpoqY^~d`gJy@{AVPUv zJTjnIP4W+5V;~GTZ9HUm;N3C3PH-Gla|u2e`d8_-Nh6Tt*hYR&Zt1?*i=`#ozkhi0)O+iKM<{F=GjEhzV)AOh55Vl*>vtTLhL~;}{8`ez&AJEfP<<1_x zz#mjI>wa~b2-e9Y03@aQa*&&Y8T4>dCZKb4Ns8a!c1x0{oHY$1Lg1I7SUq)ZeiD?ilxE}n)1C0y$97_DS~9VW0FNwljDW{3|#;P z^jHl$?-{unudCmt%_DDU^Dh4O*Zt{E=x5*0=j+#}gQK&oZjVX0-K-w2b`B3GD7R5- z?{{b~AIEpgNJs_LIz%_gh=;&9q-6>1(V5^f2!`lr0V>3vEGhgI)M+L@WNWnD2$q23 zI*}sia(m`q#tx9I@E^vW!-B@Tb@tB_{XRPE$PQ%iGmd)h4k5?RT4vF`pT{oaoCY-~ zbYQsL)VtsSA!#rDgRV|sM=Gi4(kEd;VsLS6)he$+BESrSK1r*HM+F{rqHmnT51*W9 zW37(e7bhfOts?IoKwDbMkUB3uEZ1N0X*)n)5pSsfBcp>Q%1{) zUG=-Wa8VH6Nr9G;8oqY8(+#lwKiEB*7Y3xdQT*Xwi-!D60Y`A$-kfSd$Sf(w#VpU% zkYdJ&Mehrpl4igLNUGqeKj@_@(epZc#b}SeIWW6eDzI=`5Njm*R z3Vnljs(IobC5B>#=+V_)jTtq>&pZTi=vyN1H#N@Ro6$gLu${ttJr`ww>?ibHUeB&1sJ z#ServP2xF_V92HZGalc1H{f5jgMetj=sAqSN{g{kAB^eik~4e2)4M7fGLrLf>~}Bf z$CnCegy-JMxCHC-e*Pz2nQL194$CHH$AnN`y#x;ECv4w=U>tDI0dX8M0k;j)?3FB- zg(g59V4Gb!F9DJ{Y0zcTom9f-4&v$ca~{AEtS)k*xxh(u-4Hs#J4gsXtmQ9FxhVdg zf+xh>el1{L74(x>t9 z%}+{vHR=2>h~GfbxD&#(`VWW~&=ri95rg)RFh^-YFvCjVk#MqD`nwr=R%{mb^D$b`=c-yQBKh=G7$5 zFHyxK^$jKY(1R&qPE@iA3@N zC#e8dsu?xJcjsb8A5NgSvWi5;QJX+x=3PNdAK3=DKIKMMRM!43@UP&Cvj=bPVS{wL~O zIf=OYDU$2&zn+YbRMr=*G3#cxM6hP=igWTcdy|tAi68}-gYQ55qHaPTgZ)~q8kbNd zNB&jmZz@kJCb($!ht4GxAKHYSvpch(E;b4j=s+27DVRQOIF&n!gdii@?S8){s!nwN zlLXQ>C{XU}hWSjx%s^g{opoc|OK<8K zO|y(N>98>>RAmomCZDY}yFR}aKvRg7#d+TkuVPJxd)gj(97nWKp`txFn99t;%LaA> znaZg*-DWM%@(&d0S#^Q;Q~QLd5epObc>WSI;(i^S4j{L|$jPS~i@h~_ zZ(cle-QHboyAHl1;ESL@vfGc`BP$}`X!w(t2Qf0Dgxnj|L2_+VAGo^3 z?*3K>&#uCg0-fsaHAiwI(}b&98$NalZbNg9?ZyGoG=sKHstxkg<1Pj%I1~{OA*hDTILKXJn7GhNP;CB#3S)|NN|7;Ym#JkiW!JW0mB-nu2fxmlk8crpOk2#XgELeGG0GI^*%PLdgjj!h0~MKJ(h&6_Xr4fl4eO-Q9>IBDgWnlsPP~a&RQ+k<7Acby z^UM!!7LHUX(3n06l=%)3*#`vl+WoPQkPH8&lofc=D3_EC9Xhr~5an*F5$$u>z{#iv zhn|;3pyp>pD9%}NHI#TFXwK}5QvikPP}s?whj%pS|Jng^KBKggT`*sD@x7yb;63(k z#^-P75QD*Y_XE*?IXW=T4Yzi%y8r#FB<$gMW$GoPSZ60|(){arrI-E4>;(sXE^iO` z>2V{uOV+8^%RUeOvOQevNYG-8{bvE$>isKTaCA)WYN{g-SUuQ>3ktS0Mes6klq9u@ zhJ#i~4T2w;62uI2)rwty9h6ioU_s>TN{ht5b^8DW z<}lEOT=Eb9)f5j=MSC)svDyf7P=ZECE~GMqFGA?UxVp%##+9X zGeJ02Ds}nIxldzMe(O{ds8%~hMq88v-LC&5=^Z2|T%9f1W%|fm`=c7ht_2-nDca$4 z%1@={Em22!`5Of7xdU{0AKinxkJQ(^C~i>)Hwukhk=7L*#Sgp2w@!;Aq%0AI*YbP) zVDiCm5zEnL}?0sUd+yBtI6dmXGlRk7|sHE+%FC9 zV6`W`ipqgmvA!$OoL&*pm~DH=8t~(>7+vM0`D7>m$M#TFrMl1Y&p0w)3th$0EvGCS zD{+{j5oT)2vWbh+_B*aq(TNSDGIo)4-C1%PcH0GRg)_vmfyee_vFVwJfuHonkN@Wt zrU$-Z9awqTZnR2rtLiL#r1fOao=8sFCa@Xeh?MeE=hp9kn_2&#D4*ru=UWC50Dzti z0D%1e4dwse-KEj8*1!DfRgYiOmw{~*3Pm)s`v-^gOtb3c-w?jG%eHQzj4`MaOw0 zadPaTd1AwN^teT5;;UZGcf7K)j5KcVyWFy}?yKAgZ?o}FgS_{EIT97qiOnP_m5#EK zCM2#5d_S0^SDdpVJNHAd-0?QT(Lhx~zs{5=$V>TbUhoY_dREbPz2WqgUn&*e;JZ%HE zcL&+$I|Sx+B&9cwO~Y|Bk+TJTblsARFC)up)tZd$XT24JrHO^m-L2<uq;jKa38bmF;I+3jK7K)=GU0DO1*%ZVaGutx>(0p}rZ)vb%*PvA+OhoO{vdF> zPzOy=C2cV%WC*&_t{pcjm+S02lZQ^+9!a2pplSVXt_jWbZN|azHJWrioNU|p1i%Vc zHj}$tx4mh3iRoBF;W$k?ELp-3stpZ^Z4QCS?6fb0vpbF7OW%&j_nLjeRf4lF;SwoQ z{IU0WV@=?g5$>o+r8&3S>JDA(>G$3E+q}I#$HgmBsdR0Xm1rF;hi|s4FKl$glIGiI zfmk3pn-iN%+u29ta!abtrvWKHH)i+IiEjxSY@*SOzcJ}bpch8wnMx3*9K-Ty|GWELsFYvr{ZgW?AdDw?dX5P6M8DACocd9Pm7 z35VSXGN&ZYMB&xcG|W-MX}-W3M863mHL?*<$nZ-w#sCE_Cy9k9MCAcYh252Jhw-zB zF>!nZ1yhVN%a?-?>P~=^KNR8T^Cmzj%KS#)fBVpiLoa!SoOGrj559feF6KyV?gkNG z6@;3m_DJHTHK`SJGXh(;LeG0rTkD}w>`my380QCaHu@Dx&x3A5fa_3${KH~D4ya{z zW9rEzKtG6bGlMETOgT04H}E+-EOUM~Rw1aUYr0)txm+iu_1RC4+Fd9cvQval^wyhH z<#u9Rs-s2}hMd7$*Y1HoTRcRjg6PAFaVg2%$<$rJER%~1 zNu``Qo*Ad8afba0v31)UQN^SW`5!=|+qgkX2I0JmZ6r`$I8Jil&M;VqBT4rdhvbu* zgX~7oSY**HEekNiHH@rRaNE0g22qoEbkiErGszj1Z0w_ZKUYg?tc@s|RCFwR|t_9=_VK7mz z>ondVCy^38QM39ePxY&GkcS{}T09b`;b7fRKfo<{tcS?124_0x>$JRL4Z$uB#;-*) zh_j5`y;}S-fCTZ&muor`rZ&Sd-7U}N(Z!TE8`RY{yUoJ~Yk*oL0)RGt)|Ho@k~sl~ zOcC{D^8fx&LvSo);l|Ri55qmBrbk!q;zL$$DXm`W;{B^zm3DhGyK}*W)lX#RuAut( zU(R44BBdRr=*jUg!aUZh`qpdv%|D4t^vT%3Y1DI?1- zh_lAh<&f6Hf9)-_tqJ`p1HCj}V3XOXc&OwkEV;J?`k2y|re6+8f&=T5G+1R>YjE*;Axq0SS?4vj9!QD^bwE0-t&ADPjlp}R{^r5XoJ)yY?~E&;BiRHm1`RkY1A zZJw#c(kwAer5%vB;UoJ~0-dzf$G|RFr%&=GXxL3VKd_?QA2>}h`G<=%azb_88)Eyk z&dGsUZw8qsK#2l9pP}MiIwaYlqu>LSzy5^oK^X5ua+Z>BnD6k!*B)=OUnjAwRfTEL zjYQY9ryejs?a?FWjOqzl>IsSF#yx~=W5T$=Qh9pcvRjo7B5O;tvG7+dL_dW$ zhJbv)SEQfU^h;R3*8^}^1i602`7Yz*v;Rv=R*8yxSr>+$z!B zt{(k}*Y#_uNhz64W;wazB7H@I#BG)MYKl^lD2s8#Rk4ZWHd6Y#x7IVv)Ze$FO_+Mq zT5qeTBf8C~E7~z1M8x%vDD4U0@){RkIygSM7ig^l1KX`m4wc{r6(VJytSD8>ISTR# zT^27H;{D|v6aeG+Z=`#+uIDKLcz|zlmD7xl9gP+9ahU-{>MJBNow|$PKuN9U1PBV6 zwN~6J7G2wtBece-Oeg+Y2WzJcl_M$=kr5L_Tq_A_Y6*!D1M6Ab)h`)nZ45sf3R~Q{ z4*B6jb;8Kiu1lW?>PAD)UzO@2s21EtVZFnBHr=HH+{&rY)}A|m zfU%t;Q@_*tSNTk3ysT=L`5(3?(S#Tx(iPNGu$PR`{dMQQ)pXWqGmtWKjVT<9{b;XI~_^*@Vcs( zJ2y~qv|_eSwT%UIC3Hz*@H2Up{DWW-i@9FqQ6_DTf}nGp_pw&hu*-MgmjI+@jXTkH z$aI}toJHt^y!mjTY9MP+@2=iz!{>_9X!UKWG4CBif^{GlTTixfgB>2F8l>g3( zJ3{nV+=9*SQTR6sgRio=k&^FF^l!1jR9U79EdfgC^fzb3SH#MgNpbvZv*^o`LO=(< z%|FHC{8CR0h>2?*pr zbk9~vuUW4MOC=c?8Dm`5-%Cizrz3_U#~__&T@T8aI**>Qi|D%`S**wQb{5_yls(Mx{_1m(975pQ# z@T;YWNBa~j{_9rc+cw8X`Ta}&%<$yI0|@lDS*%Yph^TdC>jgBe@+(uzjhYU%7ZiUJ z=2*FDuw!%9EcPU?)6ZZ2nGwzJvjw=C)Z_PqOnWZZ@%}>3$pL5h{MNxB|Lx|L;p0!& zr%>1ZF8X(Vxekef+tC&CqUb+-3?SpZwKybG9Dc(qLmlaz zb|>ycH2zF1bs|!Wbg6-#Q0=8{!=0_DKqKX2sX>dW)W4poz2#5{tJRz4GZ$(Nl#Tnh zYHS<2T}~D#hnqmW)Bg|%^mjJaeIW28f^}ySx~9wqomk-v%C}%U^MOqMAmARJnH)>5 z?2bcp!9c;lrRV2qPf8GRuW>IxJXo5mP92(I6))ihk{A`MLT&|aId)a-0x5y+yz|F} ziHm?z)cE2Gn;QsY9VgP?eaN#QkeY>Y9Mcc~#Zf7e~3YWXj)zv>kXxoA^ zNU5_#*6DiUUSv}FoC-x>N>dCLd_S_dKV-uOh|hU($5z6*$ooz;wU8oBJGsJ_!>jQf zU>NLA0h>CH?GZ#i=Wm!P-oggWr_bzJYyu-3y0217b}qwO&b_Vy|AA6jBB@H*; zzhYSC0M2ipzl37aFr59}_7hkikkg{c1;6}>rAb_fEa1~9KT|8W3j?+~QOeN;41Za2 z)F@}6$7L@j9LfyNwY0wIHt4V~fa0Rkwuax`4k;Y6JJHX*ZL_j=n-X6(-eX30vQ0j(p1sC5NC}^628Mfpg?J5a!TpxK z&On2`u)AY-V2LKTTi7~#Hgi$n9a?&fvnBp?F7|h)G5H))&K-i`-XWRk*3D$`OwOJ| z=IDA#P5>^oS#Hufn3rLL|8Xz4Vj{MLGh^>8fr_F$oAIo{FmxlE?S^O1pyRD}uKnay5Y(l~lS#FY}> zyNPqX6ueG^aF12>zWq8G$smKQPte9VO zW2`fyz2KsxcctWp10c@LT^k~Wk+A1|2odX|5jDxUrP?{W?7>JL@1>^5T7-=Np%azN zfe7gJXILv8o03kMJFOj1!6lx|6H0m5f;yRQf~CWN_I1&MZ*0wJ zP)#9*j+98p53ETk7|*^E!A`qi*eRM|msK$QEM1Vh8x%o~9{7DnH+<|RcrW7dUZU)C z*&h-yX`83be`yRN0-a9_vHNlilZxPT0O7c>pgcu{-IwJ4bvuj^dII;AMcY4Il$jp4 z06g}NCgjJ`oqXam`%nE04^`{-#{~}cxn4rbVdFiOxWD2z;^m9s+-}!nAPd(3K{+}X zW625&YJ%&T3a{MlxV=QYHBVx_qz+h2{}g*EMGcKp5&0*J5Vk_S`qn&Duo}U-Cjz$A zPdmSlKd;M~oERTU#VQY*>v0?J+!zAE#=s~E2+HE3@&x~_gSk>V3`Rwiu45Et9rXyvq>J6iSho83)06p8c}FcWmY zLbR4`<72gU2qwJN%kt~t z68F~^BWWIM!YP73ObKuHAF8rsCbOG1&3n^|O2Tq2S-ZE7g6*I?+&O=m({%2u5rzk_%u*UwRA*vHQYACx7y;3493OEtS|++&}IAgPAFk!GLs53tS*2SsP=TDHmOvc zrsnug(3L{{B%cqTk)G#0t94IuKZcHm!o$rEEPc}aMt=Uce6as)qk#Q?E=jpKTUa~& ze_1GO+74|y{JSRZ-;VSDbM1e}J^}c@ZJ$s~lFl*wpR5zMS=-+!iaE+%@wp-dOo9HB zb;2p-?&>`h06-Jv|7G{^zwXn>&eqhzOwZiJ+TO(RpKHRf=C9pm8_MstA4oo7*ivJ1 zkxnaZCYZ6!?MbzGAgPYS843{5JZo)38BuYY?)%;XaW~!9ozEdr zGMVv%v!G)9y`h8b&aN+?N4TA+95_L(aC^LWeU*5c=+XN5dhR&ObVFA9?omNaieN>W z_7R6iXjDX(QN*}c%5WjsKV7bzM!ve}1)))bvJ^a}1*9LfiS*BO(Ln+J?12&@p^(0W zz!TbB9RiESJPd`fh~+Rph??gTPm9!DS&!p7oB4Xa{N_l zhE&?ccE}v!UC|S){E4$n5V11>#vEmU`)Y!k{tbhIp>B1#aURKGMZ#B24Yv`?nf?sz zpR`C+;*1N-6h` z9Bu6%@gJ5>Zyr);X^_D>x?dVl3{Mcz}2sY>-F=l(IlEhddV zXYui)2rB0iAa@M&@%IR|rUkneQj}OxCkjNn@9o zRwVbnb8X8Bj(bq_=!L96ykCehy>P=BwEVWu^kNlf-hndMK>puue5tXea9kjuWUE!$ zem#y4_*0nofCGK0Y;y;y8aqZ-Fs;WxH3>w@l-bb~J_?KGroa2aP3-keQKcwT>s^Z} zusRfC%>=L%HAf|0eNtrI$#pfRC&RLa4} zq|QlE5I->^#BB?vqr$%*Fifux7pM`iiih~1R<-8Gay|2Qlo@a;im>Nwot{L+aRzz6 zd6vvboL8_20zv*v(XvX|v9U`I{4p&hbu7QQf!fc~BpAdh`IOJ!kH-W09a`P&ki-fhHvETApN&KcTEJ*MaMAstgp2#D>W<46Wn_fuZT zA4+RS!TU4fY%bEUzEzJz4j~;5EU|3y!3mb+*pt5z<{`N&euGlYwE) z6Ves;l|T@V56}Na&~DZ4;IR{wSE*7ylRl$&_$D5q?18EFLa@eevIL7NJmZmSx*&C& zm6ekNgLaDit_=a&svFPeFcf6jqfhar1?j?*PSPC%FUB7*w^f|cJf^-e0N(+^tM@jR zU4&GE@KybS8e(_8Ew}xvapW3V&f*%x5`FJ*K^pB~G$#jnlR&efN-0T+D+ zP7B9bSq0*AU;#6*#jJ9E$3Ov6jWy%6PMh_BI7kq-Q{`-XPI11l5BZt0zeUbY6lpHr zSl$Z%Gl;bYB8itcEJn2?8eS(%k(?(^l_Y=`krFjI%{IZvl;KX5yq}be@&x#I#Li+OxaD#`*Kx zkxALA-Qe7Isx#v>eMb=bTHhM2<~PqXIC>rYICF=+tF=H*UoKT~>TgLYQMx}Yq+Fk} z&P5}bb5sd`F6az12FhMc>z1;V0&@gE9Vn%;{h7q$^jLrk+~zh5YgiixWHave>waxx zo`Bhly3F4S``5w|^@)-;Wc8uBWg>R>OXd z`P&{hAq&6JD3%;Fr~BV*_t1m<_S>P)wd%{~%fGF>Xsb+%9dm&fAUx01f5p(+P`yT{ zOxd0w2j0xA>+%{kpx)P;p32n&Dy#!x_Jbxo16*-3m8c7$%RT^Rxp}=)mT`a20Pw6d zUOjX-fpZKoT%dQSTH8(YlJ_idYT==!JL;9L?p?%`ON<(5kauo*qO59Aw_2)l9^{;+c~t@jB?lqCeS;!bv++#@c4ze;H(+zvGck$AMF%evmJftue*AkFY7svdj^mT zfLKZl2YT$!Fz051)klkh2EZs?$h0r9R+vI!bb`IqdBEP|m?zZFc$SVHx8!BEz< zcfRH8e_R@wK;TWD%I{({PiNptiItSuURS_#&UTZ})2aKd#gR^4yj#UG4g= zYvEVoViG?Y@f6m{x<$grT|vC}n@y z`k2ct>Z(7#0z|+r)|s(_jf1wneP?W1dK7uq-=l z?Z=Fl`+5nTPH~I*7+q1IMH_S{>_@duU!%9?8pdn^n*6Et8SfBU)IWDGstI_w7nczt z0j~Wv0j4W8`9LWKuC2+k4&bWGdSl1cQ@rDBsyZ8t_~8iNT)E+?I%9G>&wI_UjyYr4 zb>ZT<@rA~jw;qLT5e1IT*%`G;t?Cc(_wBPTXr083T^4%WW#fd z1)CJbjYkRGhnw@ES4=xIyVJyRjSiz3-L=Xf$d22u`4Gcn9D_t10I)>EfSs#^eqFMLTH2;l z`wcWzm>gwE1=3e7!DJc28jcs)KL?zke#^u;kyno+k|#+fK{az(S2(Y`##9GAdRD5a z?7)CsgiJZSdD)8uGYl$3kk8+3Xiz!k54!(Tbq{};5+e6cbT;9*4T!4#6-Ow*UsOdPqAr!Gel}`qEXqof*dmx7aF$OzM$UBDFMDg~zny;k zL=7RiCz5wqQDm50=@{k|N!N3J6G_#6vRCO8EmtmCOsT?Aq{u;h>$T0p1t5^D23l?ikc~X=#C&2+4c?AVm|-s}%xos$TzL@deEUME%HI zHse6FZ?t2PO^`Lp?;B}P`@lgtAd~ze)((BpPe1L*LoXqMyc?^MMcQGO5@CQ!<}rsu zlAZOjy2SiU(+c{}CX_FOqz7u|-KatwFob{;F%upN@D$|^mQsZthLQyv zFPXC}Y9i?Fw&|itw_9R3Ni4UuySlBldEoPDz~IVdacUDXu?&xl$1d|_-^HD%P}+05 zjc&86>JSm&vopqqM&3j&%!U#tFZTk_?jH8gu{t=N0~Z&1PVfszxv8_^b0m3hf=$(=wv`jQu#7I$z^{&T z;;=`P#lFSZkG%2ajv$c}{D64ouRaF7jwnMeBv)EpDIqQ*oL%@<&P8M8K|GbCn02S& ztjKI(#2A%fZD93nr=XAA5zCx$r)|pIZfT4o^ge>duDOtyeyncJs0c=C5uFLcKXUI7mCINs8Byv9P3% zaY@?iLxX2Ki$#4VtjPchd@9v9b5z=O*fUacsDzj!U(OKYU5g@c`dV)8m@qLbMvw=r z@V0ksr4Nt@n8&&rprn(VNikcy8S# zRw%E6&>oOB7tyLy(+AO0ncoI-f3RATXL-K#+Z zfjVXN5+7ohPaV=3ph-tLK_~s^L8ibEubfSdE2w7S<%ozJU4YM=3GKO7+#;lnQ%Q4U zyqWZVO2Y=rVnevpYnE4b$8Qkf^ZA-aE}Z(HwkZx+nAuxZW8l&y8TIw z4fIuh46zx8FE$I2+uQQcG`r1!S{X`iGr8awKpPzc+9m2STDc+WRy~xM^XkT5rU3MU zrA>f-3je&i03c9hQ{mV>6&x<3l+|ehaq?=e{%%fI^w*pNGADca3!XtIG?6Cd8=st9 zX>Y$2uW5^!@G}rzm`>ZYSCo+Vf-vrG&DWezUeXK^w24YR#CZ|jX~IyCN$%K~XO(}a zdaTu2C%RMLB=nHxS0}quX@Zg+?KWR(QgVMI!gP;MSAoYll@FM))GL^qZM~yih&B_c ziTT*h%aMvhQX3+aZB%m|(_C8&S(DM~Y?<-J7Nk0H;lzi%m!gr{6JqN+rY(Ev2BE9* zp`6yW+I?^Ie(g;zFr^-8n2rp_uqZG*JTC4ByTKfKj^nrBLW#8hq_YF~7R_OQ&rWJSBB@bhk0F@I${&Xkh-t#BuA9WPIj+f8wzMsb8 z=_%cPt$GX{B6RCuzpPm4l6n>TrVZmI;-B_qug}s;AuuAoc=~-xdHXuad_%zO(tgx; z1I<&W3I#7F3i{7poiE~S_4b3|Zl7FN-t|DcTYS+8qk%NP|D-U_jRnMEw37iursEQn zG%`t->tSS-NFt~Tf&0o?rTO)i@B&+y4>1wxvRxhF(|m*8(<)e`jl+)i4g=D9SuFUS z%`YB|dDW31#W9`1>U9T(36t)d>WSK%Fl%DRJLQ(A`ol)7M|>YQxkQa%3n5vetfLGI zUzT>`wmJD~m)`RdkT905g@=NoY;pf8E7zGF@1JGh-Ar0DsVEAJ*V;*J2!~jlljFrW z&PFYK<*p=;$& z{As7+A{uD%{GQ{CA`FE3^ikY&%~&PWi0>R?VMux@c7@%g#ee~7t0!PZp3{d%*hDC% zD2vP=U&iv6J)^(e`IbRQ{ z3!S$?5f6Lp2f6zSvZTT8t*`! zIN3O#Wpd?NSrGovLmJur<;@rH;=VN_8i$+b0{7%?>R+?lCv8N)W1nLHWPn;Ok=zo5 z+U0Vs4d6lS`-t=TTjI5#kr(C~xRna&cR3Sf!IlN_${&4F(5?UD)Jt*tG|O|&s{O)s z9ed6DrV*O4$*N66B<>0xaw?A-I$Pyaq8U(+5_t?BW}r6fo^_RoM;CE-l^aeMmSr|E zy3W_+LrOa~_JvZ1_7OF3P5~8Y)YFS@r}4P41|u@Y^dj;NH_YT9j-c{Op}#MIJ>k=+ zKvAdGyp~B<*E*}Ql+8&1-=wn`@TVwLsYttLqCTyG=tqpbFE(hp&2roWpJ`jz;n!X6 z*#+qS5vVztFjkHJ)edAd@q$)+Gb|B#=BBkiHEUa#69va@mm{gqo}+uz!h;4@1n96q zeU^h~HvOa%yJ`h;%+3e!D0L)mx`538w_Tl0DA^$}sCj+AD(qB;ZC#`Ksyank*J9z9 zt8yT#BM6A0AU3F@mt5Lj>_y0dM7HCcT`@?yo|H8EoCs_$m&bKokW%kd$=bf~2QyEu z!GD?Jz)InW?Qmx9w-L7TbCV5LM0br!Oc&V&C#nn6`?-I;aufwvJAp~HZK=$ud*B%& z(=@lq;svw-U%3PxJfG2~MwvAuY-26<9m_#^>E-1*a{~t|G0rD{2JnF}8M1V=bGmK5 z81|?pQD-*MW7%RS1>R8 zZQa-0y&EQ>ReDlX&1ua3r<}(?cGx3wK%^9!GG&Wmb26r3!!-mfeP!LVSCq^E5eQ4# zTwOLx-h#92x-5>is`Z`{OTetVUoRSRzI-A!SkcihU@C8}qjwX}>>_5Cj3f3ILUimy z;9rv(9ae)(GV4Zv#{{+H{Jp)5x?fWWD?YYF_E-B&q|-i5g;hp_&%Q1~4PO%xY3lsiqZHD6j_Qu?mvT>Ch!xIfqgtB8mnh zwn!LGAIZ-Dwy+VaCE*V54~J1b%(1S2+FC{a38P*ek$LLS;M_ZH`lg_I1RJRUoZ zv#f1UdduYvWWy_W!Q-W~gK1^zf2#?xXTJgMN&s^msG+#K6&q;d8okZ`!K~|n3`>kW zN@U%t*tCDUWZhnb^%rkVQ!^v02qlLFn2tWt%=mkHU*8ljUze zXq2)}vhp5OWw0F5W|wu8`)e2e9E~+@!Fqf3lQHa?Fm+3(aV(wAN)by!h#g>K`s-ZQ z>EZl3HNV~1^0^~Vyy1~yf=Ts74L3OvskpEX zPo7f3%B7SZNZ{=k3G}c=|Jz_GfbYmISk5{-2QlT*rTAXw#+w#=Jj!liP()_N81(9>_CY8;z~MTSj{O(*pNF~kR%IEaY+ zGsUGsiI(lrD*Mdzak&zXaXQYV@7fgZW;$wT;Tp7U&p&lVeZd1JAzv_cgJA~uvzhhh z#c0>Ivx3H7-s)r}HN&LE1eV3xD*(f8AP#qZ5yDhubbiEUsunG1f0bgomSqRE_0`hI z_q$eTd%CbQyRg&D`n6k6-8UO#azUS0FT?yzg{`21m*DLg&G35%M8NNIstc%&EP*^~FB*I!T73v%>=2 zd9)iPR+%W`U95_qS1`9rcQMg7qaJT0)!7pHzUEx(Su{Kg5Z{o?Yshi_Gy*cnd6wQ# zZ>cAcrWE^FDPmbqyDJ?-B^EDJEYR{`%ry?8xq99QOZriNhrNx0mUg1=Whjnd4>+b4 zJ{^b)T`LvDcl$Q{y@g>jUnJQp62nb#+9ZEsP^uE74dBAP0csGFW+HDE-kRegikXzddqfCcHp?Tg-XF9GO^5d5 z?b19whK}P|luqLdwJ~J*tM5VB7S@KVw;CFZ!-#J*34Jans%BHvt(eVw?x840Yg0z- zN`pLdK>8s{+k~>6N_0Li)oGNwD4ugQC7*cqDP{t-S=2im+>+@KIrJK;myw)W=an#H zKdH5|e$|mLJ8vK4lTq~s4;VhkgkJ&zT+rp0fhZX%@W4MB`z*zPK9`mJmvaDKsQ%Rh z7#zpT>KckxcrP4hAF7Yzve#p?9j~SLLs=4^f#txCMWgE6b9w^ufftrV0vi962rFBo zvApV*2chM*1_O>4`Vox~(7oHhkjJy- zHqX1FQ+@kV87pOUyXayU3lo0@@12sga7smYhE#IxK{q>6a`S$A9V#X_^gvD&VC-Tx zTerRcnet9*`s)SOHENx{Zr^!~Bcvn*W6WVAfnnfwOcIw6?c6WWe=NuRPfQI>`{J$u1OUJR{C_3E{x5uM?`UD`{2%nzCec7{lO8^# z_f#!w0giaCsA{398Viq+T$4FPRt7`JNYK_%f~Hv3lq(4Ge%H-ah$2u~((A=*w%g4W z3?3UaZkYq^7?>9Av|p_802*Mg$(A)Cl?q1pWbo~6o9u1;p=;n8t3b8ZvRp8%0`f$( zOg{$l80RFP34a7+R-Sw+AB975j!M!}T~zOT2HrPcxeJvZHnyJ$sCC!zdscXDiKc2D zRJb}{MI5{)Z%-NLmdTpgUf^a`W;lHep0h@+MH-F(%YK{aqS&;^w8)N}^2MdEiN!i6 zd1cy|`J#i?c*Rk%CeglK97}y+}0`OCRQad@Vs+wd$`X z5EaQnPEGW#tfR~!ZeRt}Hbc1Zc>6*Eoz}OZy4+3KsSjXuB!qn-^1)JYtpaALkfHW) zq+R1Ah_=Y1M-ugc1!N;f)=Wa9JHjkt#0-IC&Hg_X1`MEuvNGr`mc>`1gzboVEbPBL zEzk&0D{+>z`#`g$RB|mXq(01(Nji3K-hDqWw9~RO-jn@XPb~9 z;axqt{E-8VhP$Ej;3Ksj{ealKr!QyOQ$JLm7g%#@ZP^Tw+a_8#su$HERgRM_nXas# z-cH1U)$?2A87oYNmCksicP3vy_o95<9R%U4(q7KN+=+*a+l9GFFQY+zKD)bAf`3}) z_b6buve6cYqS^1VfB&N#|EG|reQ+km2M_?j_g_i=r|^jXvK)=76{cke_~CPG0>p_x z5eYBCBkR%34U^FSiXPqyaP$ER35pv)RjsFN&_Y1+>_@%<@kY=cLa{fFO&7|XTuxoR zPS31n>~dUQUp8|2?~eAh^@X(}u=9h(1G4R93xFXZX}Utj4$%Y>4*L^ZL_v?BNbtd< zLKm<~Fi`AQCeasAZL2e`^~ZaK3;aO?MMm?ZM@(cSOp`BK>??re7#2>vxiN#K2B_%- zi!1Uk-CG9;{z5*d0Gx2ESH~Rlz0aRsOv|fHk-22OWA$&qhvKXrLOu9u(&poqZFnq_ zfNeGq`5K)p4b23V1&!0q(;AdG>Xd9XL|K0#aPA-GKNloFFNdi{ufQE|P!~32)>UEV zw)dG`Q9~Fq1OG0M+d6kbsH{NlcUDc$Uh-@v8pVpvnmg9^%%}1(s|bq9rbi68h~~lY zRABK|IWk->K^K?5qi1&36d*z%PEa_ zHVFCt-zGuOAvNWAy*^1kAOQgM{w?eNm(R}8#K73Z@ju=r(;8ZKSfePur?qK{aKuIt zh}*>G>ka-FYh`o%u+;4W{P2+^ZsIl~H@2>(B=a?ZVBtjT_11;<8AGh_o#j}o%_L|H zit7o7e1pYBWWT{VOiW%xar3RB65FiOl^TR*X0p*gkhw*o z-~?pWrH2{Q8nO+~*c`mNUo7wZY*DDmyT${DjV+Uq#s$lSW^r-xOi2oEIhesq;CJr3 zRZ5Wxf8A3AbOy`};tN;z#iozObIT^BHwj0f4v8ayEm)FgzCqcYtz(;>Ve74BxkUql z$HfPOw$BZ-IkVDG#dlpbOKg`ZH0a-});HZje_1Xx~v4@2YS=ZS^*b?S~QmI@o7feoycwIq=z*ckM2NK{G4+fvH4+DUjp%m|_eoQyISg8m^iAcnBjnJ|s8o*FW8c8Uv4r{z`woJ0Axo5tqS zpa&Rz#U?E>HBR@&{N;j_AXpo;WUNp>^|EiPAgHcf=o-3M)+J1a9Q{OM>;@J48#d3m zW$B`mO#c)`0^ATKTApCuw8@efO#;kyc0RIyrwXzv&e&I_aV;3|7mK;1nIH_U}NX7nP+XrXY98~ z+b-D?r$;3S6);GP26b@?b|wclPlnIKM$4OTaQV5}Oi$Bm66FBJHm*pF-0SNSp3xf<8d@pm zkaLh1N9!Bh`k#PbVGOvro1J zmmff>XT+B%qN_mJA6TONgq35DjEoLJHLsZ9!~M z?NoCrZ!`Qi$f_JH@hA1L$mBdi2nC$2q68FR9+iaHgD{l*ayHQHNFJcO5szO&)C+zP zm%zuQE5eseQ`*zQk+4$tVW7x1LIQ~6Z6k$hEp@}7M% z0#61*(+sClm$$gJZkCb5#l^N$bCA*~?2jI2?Xu16!7-sRC(MRFC`jJKa9$TgO1zx^ z6Fs{hfit|69auUssfl!uI(5IKh8t8GYD0bT;8Lt5=`l)?2o!t#bC5CMR*WE;H6=6c zGg)ccg#c*+c+sa>p4i`^;ErYP#$cX$V+yw<%pu8R@Uc=OEu|D5vHm6~Jm;A(vjt@R zU{2O}(%U4VuHA?}Ro4Jng$;_DcLes^fAXKXj_ZQiu{3iSQJ*YN+9ZvF`;Tl;LT@FG#N2Q6L6A%9=U5` zl#WzI&R88R(CCc{0H{ss%~hTK&`WDsrAm6#BiT`LQ|dpvmV_*I(1wKS#BSjNJZ<6X z26;dd6A_rIp*3;YyE)NK<`KWvnW}f}16@E^s!l=}RD}?bO)N_v29TtA?;M&V7~KXH z5jm83lE8+0mgDA0K+usAtnf+bL4zP6vMV@<`QZZ$V&#PbtjqA-jH0@XK?+OGoD=DT zZj|vm*Ue9EHJ4HoDKb-)lO( z?JkdejAAaUcwoX(aNksLUtYg2bUK(cJsa9DwYBf7y}r#J9#)6tzhAjOa(eHRa&d## zo!z6qYwhk>gaBn|9pU0Lm_YNZNsZag>$p@yP?~? z*6F;W^Fxw6ivNqy4Y@~ejZe<8B^=a#rCK z6yeln;nXJagem9fI8f-so=g%qr8l@ut%{XTjFFGktsJvJ{@%c zrd;MB17TkViJ&BOr$m*$I zKz_U{QvJ~wSq|AJ`n)gg)j#=-uIi$=C> zI&ENn!FtlTEAYJIyey!}iXLi{$ zB(nG3v$%0>?!`4ju8~4YwvfG5a%CjhQjrnL$V@h6m-v5tzrVh9ZyNv8QB3;+a`V3uR#TGZ4!It;}7x!pdv65@c$?h1uaE;OA5zMl9srl6^Hx^<|?}aZw zn>F-#^-+5jNIgcwZ83Y5{+q*$vU^jQ6e+ND29cQ}= ziwn1`Oqk_9%$>WlZ026$O86wsM?KBAMxKYRM!m8iGQQv)W*MRD9QTg>j>qlGRXbz+ zZ*RZM7H}IWX*n$>I!F&DTM4ByfJd{QpXU%dzk8Lm2VS$@79N);w0L+Zx5K?)*hlYo zCnIC+=3(dBj$BdvQ~QCSX|GvGqHAOTT1awwI06ZOw73)n~B&nd>LIO_CP(|0{=OYaC~!GIcKop zvUXxOi725oQSU9ba@tno1hAv+M{-_=5+AD0te3T$bwrmvfQ+tWiEpK@}Dy|%0NML!-VIGiPB~dM?S|S=C`nKiH` zjw5Y{escYyTzs=b=H}uI5q3_Y<)>6EO0VtIjuG;qxQk*BsEJQJ_w)Ree0ADN+q#H! z*;`v+`IJS>P^&Hv!~PBo#)J!QKE<}G2yRW)&$D3D|xCciKGhkmtsn}_{T+q zjcN*3Ya2ZlUpNdtg4;;-Z+YqFnNnq~Ci@srpPAY<^kcqIe^9-K=|UN(e0<&bEkC&}?pXx?fR{44xP$SPvdeOQHPS=Wro$ zzu`dn^8MB8w;!b7&~VRo-2m=!G3q+|;J)nPs|Jbm;{8t@UGKy2zYyndb{UnWMJ8Rz z4X&M)e93F?WdV;6|9lZ^vuECcX9*)`^Zb~T4gJrne<}V@ z#}bgpQ$k$@87^yP>Ahe2pyafU({S;0;)SBRdC+U|6>0VqJm!H7!fY>>Cc9n_7e!6) zi*y{fBw+(c6TJ%7^ev|6*C+yLIoq#ZsOFBLxdvnhajef}wJE&oUyg9<`uZsYV?1P?(0jzKAvb|-IYvc(P|avT%imT7oT{9cFJ z9@#{9%|?ag)rsznAllg(nNBU4&;(^Xo>z*Zugn>lmdoZZsLko#GKz0iQX>57CRrDf z7~lsc$Tq~^(8X4GzrIiual|j;lE0%^EX$f);K9!xB472=`%7yGjW@zZ$;j4 z%-Wqe`w`46GIt?`#-qb|AU{KDq6Io-XQ@F*)o0T23Jc;?9-zt7x}+dPAcAQ^PXXtr zst-Hg)1g3$H%*#bY%)m2Zo?GGBw?yCWUO+7p@c6keJoqBqD;_IMxT~vDE9zS--D>9 zko94!i|=tO4A%BMVR^dbrMy^yXGdJ`l!i8raZKd~Ljj|tt(RSKhR%Tgwk0ujdd*Z@ zUQQg+^Zd)IP3D1lZ7yUva6KVS_(m>o`VLPuv%^iq8;bHw`xPp~ZT5LigtRkPAK0?V z&Ds^~Zh^)=z61^f4!%+v@Nm8@$HuohoN4fGM<*K z&oDS&B^&b4*jh>@J&a12eQricQE141t&0S*hc(CR|Ms zrytGe8+d^o*?apNV6RoFEx#0g_@IAk7KW63ze;cd)>&HMC-W&#i=S50qxECgc820O zB?M!GvbIW8KCkw6<#@u zcO^8RvRU}S-eqy{nyid(lpDc3rueV{TTzF+A&9d31D-w^LlaIG_xd#oa}`*-2p!@$2xX#J5$3eHCd`O}V*~>+GF4 zUr?R)SClBVHAwYiJa0kEa5G)1T$Pa{uT?(WZ6q-XI8NLBjCXB&R#^@Q(e_o^pc+tw z>gYr*kEMf!zlvFOx2OpgcpaRfManPME=C4#+mkvOF(D4SAhFBbmza`G<(wh6>B+{Z zR=I`8z2i$R#}KDatkyczyZCPzmjrzf96Ht}H!QRVmY?pgE9##f09?Ncss+7`-*PT~ol zGsj5W-7qo`CcQLsd*McuRNNnhN*c!3O?m}Bv%t18$ z>A0FGdOB5CvYK9otLkiFgYrCfMQ7qDiP)_a2m_|{r4BG}oUA|C%~^`Gsc)JTt1`yC zt6f>e^f6D?i&&yU^{q>6MaNs0unO+CF40K?>TaQ?D+WUh#I;%n^hr6mSBCwX8yXM7 z?}n_;wezLCs*pSU{FxA1ab?M{vUWRj!)HLOqKvkORVxU#FkY=io4ww5?!)lA&x1)X zUR?-YC5Et@2|lIqwG4)=jI~$O+FZE2SQ1yN}*K;xWOLw)+q5sPG zT7^%@Rk5JM$gSa!&8Y<1^SdjHNiQZyy73Dwu1vL)+MFewx!3UZ(@4R_Ql_J9HcKtN zB4gjkXIG&M!5{lSC&*b`S?Jn2*{JPkR4L?DRY^^Hqc>?7zZe(u0eAL!5OF3a#+D8P z=2m`TOLaS*C3&g^ZYwcK_BdOuN1qa2$NDMZY$;zRB#y)zc0T5FzGDV!gxL8Tn~1<5 z+H3Lgw>9jnb1O^c7@3gwuT4H1(`sN|agCU=Ep`%k${7>MN)57nPja^P+9jtq*7Uwa zb&;RtnW*2>krpJLJ-qQUEw|*|5Pc2a_F%|h(iNf?lgjIqsm_^xRA-R`!FFrF^exw0 zx-98&zeVwS_bA>@f%HyIJ|*rbkNBtY9QiHO?@pf za6ID*qQc3EC0LAOhOQbbd@gEPm!Xt-#B{E4lk~hDgf)DoYPm-uhiLNzOArB*@NA0$ z0Txt+%z-UptyONEqP?TRi(gjUE;F68gS)?cu#AkEU2fq~(lE7{^g%P$>w7Zlq>5+a zhr6PAkR5L*1h>iFHl2$VX_9&t#urJ@ zkzHh!=jPm8trdNyV2z$`gTAdqWRUdUil6QH2N4BnNqr`&>5?~Fg#1K$0(Jx&;cOhE zrV3BKkhP9>ur0?K+Xs;+JQito>aN8-mB;t;Jk6Nba|f<#_B_u==`IzYb2aC?5#%pA zxpOH`dtYt#q?;PM`hjR$Yl%u=XKAH+9E`Pn+%$@h|ka`4+zGiK)O5QfT z2&W*~zK_U{gSW@}8j$B+gfU->lGoK#W$@uNVHija${le^Ugg3NH)TT<`{$P#&hU+Q zXAt?>%e*EwW+B0%o{86qHhr{{ORaJ_SR^Lgb-9zcLv@eE*qjPWq@gA3c0GngaVq1k zX{}6K^_`soC9#p9ot!<_W+gE-dqnNXC^-xRb}fuzO-eS(J4g}~%j^1@LE(He(YOex zKhvQ8!|`?Cz;RaC$<8+mjPT6%JHBCO z{EXI5nzU8jpkvqgnt(SdZ11vQA~7J7cQMNnPFfV>=VySud|KA9Ov?|7U7S_rg#=_Z~CV=*L53B>wrTO%_mHZaX%gS_|3SV=$ign>#6c9>Pi?I<#-BsoiD` zUI^}a3uy1mVl@DMu=T#M{U^SZL0V_G&SXFN0kp^shy=%4N z^d_jEb(q;I;x>>LeEzUfp_t%yFwRUOEkqD}ll*CG7nFOLDeQ|u1{6nJC+7N5wc3yfz%=LOeF+)HSav}F@_dpAGHuqybLn;XX5TIP}OlSK;N|(mK;T-ql<}-bPFZ|6OP*shTK9iLnc8$;qK} zzV-0L_kkD{F#9CPiY50P3j}HfW-;iG8;E&>egE0RT41UJosl4WvSdcY#P3E+QZ;V0 z#EvU@CtDTE5qyrACMHr|i{s7><%gWq=gc>s`l)LiShnjJvA9Kx1qF$1NcGca9KuMh zYerg=OofDaA0*gZ?*UC}E;w=|^Wi?pCq4P@a91p7+Bw~Bi!iUhBC(Q4HGsru%?TV$ z(@j~(FU=8a6`zevRpc=epEN~kY(yNmyZ{}@+eO}9M?8tj@|%BMsC!7O=x@qJwNIb# zrEkfJ2WF#$OM6hfCW+wOj_kon!EdpwHIXVj!N#y&cU7OTv+GX6)50RR3DR1^h_B{n zi=t?0m$uSB$|v(wH9X@}yX<+cu|DhNy;s*^Z@h%Oku*dHCIm`3f>{XH>4bHh%9nc# zi5QLI>JmjV6V>E#{j#7k(VDpv_*~RO^p&T_6&^D9Qf)M16~t)G$2tgS`AiP?xydk+ zb+q~)jE;Y0Vo@Dfa1uRf^J>zAz|1e<=FHx%hoYXOaC*?yiOz(ZSn`_G%;AjgGFRAn zf*6z*Y_Iyuvl>yem5Gq2sh<|CE>#L$8L>phjrbQ7&`z-+q`>w{}znrF$qm0OQPNo z!molc7xbYH*I(Oi1)8=IjeK&-!$okaiGQquOo%cX-|Fn>Wbo{AltO881Y?%fm>QcN zcL3tz)aWyt%Ib?Un(7<7r*H;c^?bc;pW3uPCT25}xzSahVro;BaQ2Jac4i2P1JT0BWFZEQxQ*E8LY^=04GNw6PuS01z_dc;-o0@=BH<@T4GIvX~O zFGfE*$d}d`L!BK6)J|#%MLw9g`1m46pWOEVa5Vi)Ki5xq30Mgcj}HPd{4N046_`vw z8CA%#o_O!``5IF68(!n341=9?d76!9f|rErkAYJwLls*(@ZMu(?0tx{-v#S40c_On zT$~s8v?fVsNJG==tWGsk%d~A*IPN%naA?e2JGXN`WM@b2(4Ru_tLJ(kHsOa1I!7+34}l+&h-K8T zW8NJOFUAl8aR+-zG28I1SkTJhqFy-XR!L&`@XjhbJ^BdqVex^TeY1&$>26&ftY} zO|JMdf65J;b9&R($-KzSbY)*(jy^&m>x%t}PA_4Bxd3qj9?$yIuiT%nm6h#fn(U1i z?#IDyi%%wn4saKLX|R{d%g3p1zIlINkZB~a?HLovIjSUBYT<^IC_LY@IkbI5sGz@6 zqS=%8?S~hvgZ=ud0k<@K1;t;zXv(1D)ewX!RVPz z2%^y0GRi|8%#aci&35&*?PpNbOhAU}%nTl_nsdf0T2h+3OuM)zZ@zbv5DY)938Bw_ z>+dmbeA8#$xYS_prQ4{zz42f(WF8}O#Sm7>#c+vIXrR@CrmfDV^ipA1tQb#H?6k13 zA#`eaiT&CM3-T_wu!)L0ON;h0<+cbdBOLpjbGc@oHjXq6SQ6n8@Y9f>10lC z?5Q2jRtW)P8oE_0RV~5%8r^d|xoY@fa4F-L9c9!;bkI!9)ub_`~_&eh}WnXMs86_GTpMOk#FQuj1Zx@&6cn63RUJayO zs+kY6G3!%gY!0DWjMAnPMXgiYpMt;kJT*HJ0Cw>Ue(KR7b(i>o%8iyr$T@vw4LA5` zc3z*lQBiSJdXJmEz3IKu=Np zCktzT?SNzTy^@a3j+DM}my-6^hm#5!Mm$O`@BxTPw6}4-OyWy^?!iRO!xH@>nJ+`^ zQ)f)+7e!q0NpA*@aU|K^_*9>4QP?e$X_5;sx{VoA^-9XM(a-MsNG-1c(@tN3^h&nq zO3VcVo+bw$?bPWx#_0O$ayN^_oX6by15y=Kk55B-@Sfw)P^Po$2vv7oj%na2J)gt* z);P_;@F8~q=g7OurniXPGXftEQ!iXt@}|^YHCM633D(ZpnGaZvn}1BIf49D;@r}1{ zTaQVm*XK*M;4kf+W{qil3tw2wXU)Mr4U>oRj2)-=pF6&j^$Iw-Xm;uRD`AdO0iiuE zg96!UGYAgL$B|K+=?6?6m>A3pMe1Jzc;)gE2C)wWicTflASE;3ZT}FNj@D@zzkgKy z23Qz_4RlYqkBdxjh(8?W1+{~Cdw*YH0l94e9TBFAoY>%tn=Hs=70!|0pm9Bs$k={*&tKI!i`Ib{B@_hTcnR$uG}QgM}S#I;JH&G|o1{p|4Gs ztY-i4$_El=V_*K7AO;q9PKfS8is}yOGHi%BZknioSz61DO+d5j?Lwl_5-at<$x&5; zB+9^rMYit22$6N**e~2u<^tvuUdHbhS;s)jYAe={GrB)FlD2~wU5vWZV|shCW(K7- zhK)|JJX$tU8fxjitIHs`1-t5$c8V6a&`p`tot0OqVGj9W2;%4=rF3K@-m621@oamUEzeN!YI=zMS>`~$i!#V4eQfUKn-mkixLC~I}%fXMzjaMA|L+Gl6 za1DY1)1BaoQGi2;Nm&B*^}_f^yL(R~)bLsW!5nk8)K!@b$APOSmM_ zn!(4!)7Gk4OzWGWjvPh)@0IxOXcbxUOoKF~>|1t?3$m=tPjWUuf; z8YcW?^?U41E=L&V_vP@sS0mSdSHF;1<6y_!Klb=Th!k@V?cnswCSO-Y_lhX}FHaV_ z0>rVgBJa6_Dn}5cz1^*RUFJ-tLg&;%b37)M$4+^|wK5lcVxM*&h8<4ft1Ww1LfzM< zL6sWRsTc{u{o&|@gcHM}fQN$s$Ui6ld?%d8 z`+;B&fk8a%As%)CHg3)yuHJt_QGeqApGZW|k0=i)Tp-XHCg2TrfS{{+yBRhG%u9iQ z<9$FhD2RtYBH&P%jT^)l;)X8cC~z^3y&};7-nIUTu>mlCnCh~zarSVA+t>g{1flEj z`*5PS4|tyqC>B~29WbDyc09xGN63+o1lSV@99UME4D|0`B>>)8gaZ0 z1+rEF;26It0zQ$5Bo`DE9PI517?C#|>~U-vInAz;ye0yHM)}cmCky{A2u0G7Egh)< zOzEG5TK`%I6w)QIo$Dp22js`ozR-(`%{~)2QsRG4LdhL^!2{;-UqT{^(~n2}+XDV3xV#!x<_H8pX}|+` z;C~5;SovGzPcpLxQmAABOT!oW_dbGeP$Z)4&hKQxy}%yc4p1-mV|}Wh%I2XlaED$S z8wkYn4GDZA5rV~kPyI>k5$T&TvmX89e+h}`dW3?7!r;#C&VdlG-&r#@sNl8_Ku820 zK<9r6iNLSHqYsHrv-)V~Wiepg(I3$^oJKp_E+fYvIpwEqG1|B&_aSeBiexA-y6 zf8?^;sZO)U%fjzCPSy`76j=uT=6aH0`ePs*5GV*}&49M(zl2289LsVC!|j}osX!^0 z&)72n=QH2}sF7{$#c`UxaZm)k#4$q=#QL9{BR?YS|0PKLSJ7>@(1QCtAWH(s9;(4> z4F8#iA`Y9(Qjds3wznVXqErE9irSF7j~|P3JI>g}Ywxa=0ivXUvO4-E`&&XHe5QX* zK@oFg=%2_7lePdAjqd0^V>W**#>?(k7Uc!rMN9(K)-8)}=usFLKXy?5=QHl#Q7E!B zfeK71bWgty> z1UkdNs@=-qR*z7Cng-MeYSVN>?C+^RiN*MwaE=P-gLDEmjEXgu`3vl?>O9J~VI~N` zVgro|FG?BQSNeZoQRJ?=Sn0_xE8es?Dg_|SokHPyYyFz*?&faut$dFOdnyp-MrHsy z1Q;l4g^?ToH55hak)`fv4GDDsqnA=(;K7X|6>j|-s+TAD`?pKz9ogOt!Vez-<^n!? z_Csv{mWd*?&eKZIjn?$;Wx!SkQ_-PF`(H!<4I;mc+1H`w-g{|r=MU@x$}v!na(dI$6+n=%1F?ErZPaiP?b&R-IL68S`oNV*EBBul`g zP=_w~g})IAH1KG)nLuo&_u(d0@;(5|0BRhy?b|E)4eVRXjBY>@EbV63utA_20LPA! zUGaN=fkVkFxu2C@s^#+KWT2g31N@*au+JK*P+6BJNe~A7Loc zhEAC2RhI2t3jRRhBfRB0Upe}th(LpNho z+Vlb{4eAQ<_|teG>y}sI@#6vZ#Xr-25@)XK)>H}9z*8WrsBvrPSGc1tF3P3i=w`>a z><&8(L|0K!^bqr6_ZJd>V*Vr){lfEa7K21c5n%q<-+}*EivKiMzg3EU&)s)uGTmQ8 zf0BAc`8EJV9b@tEp-}(WT|qy%{JTELA4ormLO)mhJBpnD7*Xh_2BOz78QQUf-*F03 ze}Vf+9{Rrd@4Q}(V|Zx0=+V`oZ+reuv(f%D4Mp5>J8{3`7HohSBJho;XBUQ z;xBM0@~D7tg}%(@J8v8~UjB#gD*v^&Z;NiwWuZ^jf5*IY`3(j|&QZKWpIZCQ@rNG6 mId(DyT^st8%y(v@=if2`p*X<61Ozew{$v58uraSAFa19qw@G&Z diff --git a/paddle_palm.egg-info/PKG-INFO b/paddle_palm.egg-info/PKG-INFO deleted file mode 100644 index 90c7ea1..0000000 --- a/paddle_palm.egg-info/PKG-INFO +++ /dev/null @@ -1,105 +0,0 @@ -Metadata-Version: 1.1 -Name: paddle-palm -Version: 1.2 -Summary: A Multi-task Learning Lib for PaddlePaddle Users. -Home-page: https://github.com/PaddlePadd -Author: PaddlePaddle -Author-email: zhangyiming04@baidu.com -License: Apache 2.0 -Description-Content-Type: text/markdown -Description: - # 多任务学习框架PaddlePALM - - # 安装 - pip install paddlepalm - - # 使用 - - ### 1. 创建任务实例 - - 使用yaml格式描述任务实例,每个任务实例中的必选字段包括 - - - train_file: 训练集文件路径 - - reader: 数据集载入与处理工具名,框架预置reader列表见[这里](https://www.baidu.com/) - - backbone: 骨架模型名,框架预置reader列表见[这里](https://www.baidu.com/) - - paradigm: 任务范式(类型)名,框架预置paradigm列表见[这里](https://www.baidu.com/) - - ### 2. 完成训练配置 - - 使用yaml格式完成配置多任务学习中的相关参数,如指定任务实例及其相关的主辅关系、参数复用关系、采样权重等 - - ### 3. 开始训练 - - ```python - - import paddlepalm as palm - - if __name__ == '__main__': - controller = palm.Controller('config.yaml', task_dir='task_instance') - controller.load_pretrain('pretrain_model/ernie/params') - controller.train() - ``` - - ### 4. 预测 - - 用户可在训练结束后直接调用pred接口对某个目标任务进行预测 - - 示例: - ```python - import paddlepalm as palm - - if __name__ == '__main__': - controller = palm.Controller(config_path='config.yaml', task_dir='task_instance') - controller.load_pretrain('pretrain_model/ernie/params') - controller.train() - controller.pred('mrqa') - ``` - - 也可新建controller直接预测 - - ```python - import paddlepalm as palm - - if __name__ == '__main__': - controller = palm.Controller(config_path='config.yaml', task_dir='task_instance') - controller.pred('mrqa', infermodel_path='output_model/firstrun2/infer_model') - ``` - - - # 运行机制 - - ### 多任务学习机制 - pass - - ### 训练终止机制 - - - 默认的设置: - - **所有target任务达到目标训练步数后多任务学习停止** - - 未设置成target任务的任务(即辅助任务)不会影响训练终止与否,只是担任”陪训“的角色 - - 注:默认所有的任务都是target任务,用户可以通过`target_tag`来标记目标/辅助任务 - - 每个目标任务的目标训练步数由num_epochs和mix_ratio计算得到 - - ### 保存机制 - - - 默认的设置: - - 训练过程中,保存下来的模型分为checkpoint (ckpt)和inference model (infermodel)两种: - - ckpt保存的是包含所有任务的总计算图(即整个多任务学习计算图),用于训练中断恢复 - - infermodel保存的是某个目标任务的推理计算图和推理依赖的相关配置 - - 对于每个target任务,训练到预期的步数后自动保存inference model,之后不再保存。(注:保存inference model不影响ckpt的保存) - - 用户可改配置 - - 使用`save_ckpt_every_steps`来控制保存ckpt的频率,默认不保存 - - 每个task instance均可使用`save_infermodel_every_steps`来控制该task保存infermodel的频率,默认为-1,即只在达到目标训练步数时保存一下 - - - - -Keywords: paddlepaddle,paddle,multi-task-learning -Platform: any -Classifier: License :: OSI Approved :: Apache Software License -Classifier: Programming Language :: Python -Classifier: Programming Language :: Python :: 2 -Classifier: Programming Language :: Python :: 2.7 -Classifier: Programming Language :: Python :: 3 -Classifier: Programming Language :: Python :: 3.5 -Classifier: Programming Language :: Python :: 3.6 -Classifier: Programming Language :: Python :: 3.7 diff --git a/paddle_palm.egg-info/SOURCES.txt b/paddle_palm.egg-info/SOURCES.txt deleted file mode 100644 index 4f6561e..0000000 --- a/paddle_palm.egg-info/SOURCES.txt +++ /dev/null @@ -1,47 +0,0 @@ -README.md -setup.cfg -setup.py -./paddlepalm/__init__.py -./paddlepalm/default_settings.py -./paddlepalm/interface.py -./paddlepalm/mtl_controller.py -./paddlepalm/task_instance.py -./paddlepalm/backbone/__init__.py -./paddlepalm/backbone/bert.py -./paddlepalm/backbone/ernie.py -./paddlepalm/backbone/utils/__init__.py -./paddlepalm/backbone/utils/transformer.py -./paddlepalm/optimizer/__init__.py -./paddlepalm/optimizer/adam.py -./paddlepalm/reader/__init__.py -./paddlepalm/reader/cls4bert.py -./paddlepalm/reader/match.py -./paddlepalm/reader/match4ernie.py -./paddlepalm/reader/mlm.py -./paddlepalm/reader/mrc4bert.py -./paddlepalm/reader/mrc4ernie.py -./paddlepalm/reader/utils/__init__.py -./paddlepalm/reader/utils/batching4bert.py -./paddlepalm/reader/utils/batching4ernie.py -./paddlepalm/reader/utils/mlm_batching.py -./paddlepalm/reader/utils/mrqa_helper.py -./paddlepalm/reader/utils/reader4ernie.py -./paddlepalm/task_paradigm/__init__.py -./paddlepalm/task_paradigm/cls.py -./paddlepalm/task_paradigm/match.py -./paddlepalm/task_paradigm/mlm.py -./paddlepalm/task_paradigm/mrc.py -./paddlepalm/tokenizer/__init__.py -./paddlepalm/tokenizer/bert_tokenizer.py -./paddlepalm/tokenizer/ernie_tokenizer.py -./paddlepalm/utils/__init__.py -./paddlepalm/utils/config_helper.py -./paddlepalm/utils/print_helper.py -./paddlepalm/utils/reader_helper.py -./paddlepalm/utils/saver.py -./paddlepalm/utils/textprocess_helper.py -paddle_palm.egg-info/PKG-INFO -paddle_palm.egg-info/SOURCES.txt -paddle_palm.egg-info/dependency_links.txt -paddle_palm.egg-info/not-zip-safe -paddle_palm.egg-info/top_level.txt \ No newline at end of file diff --git a/paddle_palm.egg-info/dependency_links.txt b/paddle_palm.egg-info/dependency_links.txt deleted file mode 100644 index 8b13789..0000000 --- a/paddle_palm.egg-info/dependency_links.txt +++ /dev/null @@ -1 +0,0 @@ - diff --git a/paddle_palm.egg-info/not-zip-safe b/paddle_palm.egg-info/not-zip-safe deleted file mode 100644 index 8b13789..0000000 --- a/paddle_palm.egg-info/not-zip-safe +++ /dev/null @@ -1 +0,0 @@ - diff --git a/paddle_palm.egg-info/top_level.txt b/paddle_palm.egg-info/top_level.txt deleted file mode 100644 index b136828..0000000 --- a/paddle_palm.egg-info/top_level.txt +++ /dev/null @@ -1 +0,0 @@ -paddlepalm -- GitLab