mtl_run.py 16.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xixiaoyao 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
# encoding=utf8

import os
import sys
import time
import argparse
import importlib
import collections
import numpy as np
import multiprocessing

import paddle
import paddle.fluid as fluid

from utils.configure import PDConfig
from utils.placeholder import Placeholder 
from utils.configure import JsonConfig, ArgumentGroup, print_arguments
from utils.init import init_pretraining_params, init_checkpoint

sys.path.append("reader")
import joint_reader
from joint_reader import create_reader

sys.path.append("optimizer")
sys.path.append("paradigm")
sys.path.append("backbone")

TASKSET_PATH="config"

def train(multitask_config): 

    # load task config
    print("Loading multi_task configure...................")
    args = PDConfig(yaml_file=[multitask_config])
    args.build()

    index = 0
    reader_map_task = dict()
    task_args_list = list()
    reader_args_list = list()
    id_map_task = {index: args.main_task}
    print("Loading main task configure....................")
    main_task_name = args.main_task
    task_config_files = [i for i in os.listdir(TASKSET_PATH) if i.endswith('.yaml')]
    main_config_list = [config for config in task_config_files if config.split('.')[0] == main_task_name]
    main_args = None
    for config in main_config_list: 
        main_yaml = os.path.join(TASKSET_PATH, config)
        main_args = PDConfig(yaml_file=[multitask_config, main_yaml])
        main_args.build()
        main_args.Print()
        if not task_args_list or main_task_name != task_args_list[-1][0]: 
            task_args_list.append((main_task_name, main_args))
        reader_args_list.append((config.strip('.yaml'), main_args))
        reader_map_task[config.strip('.yaml')] = main_task_name

    print("Loading auxiliary tasks configure...................")
    aux_task_name_list = args.auxiliary_task.strip().split()
    for aux_task_name in aux_task_name_list: 
        index += 1
        id_map_task[index] = aux_task_name
        print("Loading %s auxiliary tasks configure......." % aux_task_name)
        aux_config_list = [config for config in task_config_files if config.split('.')[0] == aux_task_name]
        for aux_yaml in aux_config_list: 
            aux_yaml = os.path.join(TASKSET_PATH, aux_yaml)
            aux_args = PDConfig(yaml_file=[multitask_config, aux_yaml])
            aux_args.build()
            aux_args.Print()
            if aux_task_name != task_args_list[-1][0]: 
                task_args_list.append((aux_task_name, aux_args))
            reader_args_list.append((aux_yaml.strip('.yaml'), aux_args))
            reader_map_task[aux_yaml.strip('.yaml')] = aux_task_name

    # import tasks reader module and build joint_input_shape
    input_shape_list = []
    reader_module_dict = {}
    input_shape_dict = {}
    for params in task_args_list: 
        task_reader_mdl = "%s_reader" % params[0]
        reader_module = importlib.import_module(task_reader_mdl)
        reader_servlet_cls = getattr(reader_module, "get_input_shape")
        reader_input_shape = reader_servlet_cls(params[1])
        reader_module_dict[params[0]] = reader_module
        input_shape_list.append(reader_input_shape)
        input_shape_dict[params[0]] = reader_input_shape
    train_input_shape, test_input_shape, task_map_id = joint_reader.joint_input_shape(input_shape_list)

    # import backbone model
    backbone_mdl = args.backbone_model
    backbone_cls = "Model"
    backbone_module = importlib.import_module(backbone_mdl)
    backbone_servlet = getattr(backbone_module, backbone_cls)

    if not (args.do_train or args.do_predict):
        raise ValueError("For args `do_train` and `do_predict`, at "
                         "least one of them must be True.")
    if args.use_cuda:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)
    startup_prog = fluid.default_startup_program()

    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train: 
        #create joint pyreader
        print('creating readers...')
        gens = []
        main_generator = ""
        for params in reader_args_list: 
            generator_cls = getattr(reader_module_dict[reader_map_task[params[0]]], "DataProcessor")
            generator_inst = generator_cls(params[1])
            reader_generator = generator_inst.data_generator(phase='train', shuffle=True, dev_count=dev_count)
            if not main_generator: 
                main_generator = generator_inst
            gens.append((reader_generator, params[1].mix_ratio, reader_map_task[params[0]]))
        joint_generator, train_pyreader, model_inputs = create_reader("train_reader", train_input_shape, True, task_map_id, gens)

        train_pyreader.decorate_tensor_provider(joint_generator)

        # build task inputs 
        task_inputs_list = []
        main_test_input = []
        task_id = model_inputs[0]
        backbone_inputs = model_inputs[task_map_id[0][0]: task_map_id[0][1]]
        for i in range(1, len(task_map_id)): 
            task_inputs = backbone_inputs + model_inputs[task_map_id[i][0]: task_map_id[i][1]]
            task_inputs_list.append(task_inputs)

        # build backbone model
        print('building model backbone...')
        conf = vars(args)
        if args.pretrain_config_path is not None:
            model_conf = JsonConfig(args.pretrain_config_path).asdict()
            for k, v in model_conf.items():
                if k in conf:
                    assert k == conf[k], "ERROR: argument {} in pretrain_model_config is NOT consistent with which in main.yaml"
            conf.update(model_conf)

        backbone_inst = backbone_servlet(conf, is_training=True)
       
        print('building task models...')
        num_train_examples = main_generator.get_num_examples()
        if main_args.in_tokens:
            max_train_steps = int(main_args.epoch * num_train_examples) // (
                    main_args.batch_size // main_args.max_seq_len) // dev_count
        else:
            max_train_steps = int(main_args.epoch * num_train_examples) // (
                main_args.batch_size) // dev_count
        mix_ratio_list = [task_args[1].mix_ratio for task_args in task_args_list]
        args.max_train_steps = int(max_train_steps * (sum(mix_ratio_list) / main_args.mix_ratio))
        print("Max train steps: %d" % max_train_steps)

        build_strategy = fluid.BuildStrategy()
        train_program = fluid.default_main_program()
        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                
                backbone_inst.build_model(backbone_inputs)
                all_loss_list = []

                for i in range(len(task_args_list)): 
                    task_name = task_args_list[i][0]
                    task_args = task_args_list[i][1]

                    if hasattr(task_args, 'paradigm'):
                        task_net = task_args.paradigm
                    else:
                        task_net = task_name

                    task_net_mdl = importlib.import_module(task_net)
                    task_net_cls = getattr(task_net_mdl, "create_model")
                    output_tensor = task_net_cls(task_inputs_list[i], base_model=backbone_inst, is_training=True, args=task_args)
                    loss_cls = getattr(task_net_mdl, "compute_loss")
                    task_loss = loss_cls(output_tensor, task_args)
                    all_loss_list.append(task_loss)
                    num_seqs = output_tensor['num_seqs']

                task_one_hot = fluid.layers.one_hot(task_id, len(task_args_list))
                all_loss = fluid.layers.concat(all_loss_list, axis=0)
                loss = fluid.layers.reduce_sum(task_one_hot * all_loss)
              
                programs = [train_program, startup_prog]
                optimizer_mdl = importlib.import_module(args.optimizer)
                optimizer_inst = getattr(optimizer_mdl, "optimization")
                optimizer_inst(loss, programs, args=args)
                
                loss.persistable = True
                num_seqs.persistable = True

                ema = fluid.optimizer.ExponentialMovingAverage(args.ema_decay)
                ema.update()

        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)

    if args.do_predict:
        conf = vars(args)
        if args.pretrain_config_path is not None:
            model_conf = JsonConfig(args.pretrain_config_path).asdict()
            for k, v in model_conf.items():
                if k in conf:
                    assert v == conf[k], "ERROR: argument {} in pretrain_model_config is NOT consistent with which in main.yaml".format(k)
            conf.update(model_conf)
        mod = reader_module_dict[main_task_name]
        DataProcessor = getattr(mod, 'DataProcessor')
        predict_processor = DataProcessor(main_args)
        test_generator = predict_processor.data_generator(
            phase='predict',
            shuffle=False,
            dev_count=dev_count)

        new_test_input_shape = input_shape_dict[main_task_name][1]['backbone'] + input_shape_dict[main_task_name][1]['task']
        assert new_test_input_shape == test_input_shape
        build_strategy = fluid.BuildStrategy()
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                placeholder = Placeholder(test_input_shape)
                test_pyreader, model_inputs = placeholder.build(
                    capacity=100, reader_name="test_reader")

                test_pyreader.decorate_tensor_provider(test_generator)

                # create model
                backbone_inst = backbone_servlet(conf, is_training=False)

                backbone_inst.build_model(model_inputs)

                task_net_mdl = importlib.import_module(main_task_name)
                task_net_cls = getattr(task_net_mdl, "create_model")
                postprocess = getattr(task_net_mdl, "postprocess")
                global_postprocess = getattr(task_net_mdl, "global_postprocess")
                output_tensor = task_net_cls(model_inputs, base_model=backbone_inst, is_training=False, args=main_args)

                if 'ema' not in dir():
                    ema = fluid.optimizer.ExponentialMovingAverage(args.ema_decay)

                pred_fetch_names = []
                fetch_vars = []
                for i,j in output_tensor.items():
                    pred_fetch_names.append(i)
                    fetch_vars.append(j)
                for var in fetch_vars:
                    var.persistable = True
                pred_fetch_list = [i.name for i in fetch_vars]


        test_prog = test_prog.clone(for_test=True)
        test_compiled_program = fluid.CompiledProgram(test_prog).with_data_parallel(
            build_strategy=build_strategy)

    exe.run(startup_prog)

    if args.do_train:
        if args.pretrain_model_path:
            init_pretraining_params(
                exe,
                args.pretrain_model_path,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        if args.checkpoint_path:
            if os.path.exists(args.checkpoint_path):
                init_checkpoint(
                    exe,
                    args.checkpoint_path,
                    main_program=startup_prog,
                    use_fp16=args.use_fp16)
            else:
                os.makedirs(args.checkpoint_path)

    elif args.do_predict:
        if not args.checkpoint_path:
            raise ValueError("args 'checkpoint_path' should be set if"
                             "only doing prediction!")
        init_checkpoint(
            exe,
            args.checkpoint_path,
            main_program=test_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        print('start training...')
        train_pyreader.start()

        steps = 0
        total_cost, total_num_seqs = [], []
        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
                    fetch_list = [loss.name, num_seqs.name, task_id.name]
                else:
                    fetch_list = []

                outputs = exe.run(train_compiled_program, fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
                    np_loss, np_num_seqs, np_task_id = outputs
                    total_cost.extend(np_loss * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    current_example, epoch = main_generator.get_train_progress()
                   
                    cur_task_name = id_map_task[np_task_id[0][0]]
                    print("epoch: %d, task_name: %s, progress: %d/%d, step: %d, loss: %f, "
                          "speed: %f steps/s" %
                          (epoch, cur_task_name, current_example, num_train_examples, steps,
                           np.sum(total_cost) / np.sum(total_num_seqs),
                           args.skip_steps / used_time))
                    total_cost, total_num_seqs = [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoint_path,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)
                if steps == max_train_steps:
                    save_path = os.path.join(args.checkpoint_path,
                                             "step_" + str(steps) + "_final")
                    fluid.io.save_persistables(exe, save_path, train_program)
                    break
            except paddle.fluid.core.EOFException as err:
                save_path = os.path.join(args.checkpoint_path,
                                         "step_" + str(steps) + "_final")
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    if args.do_predict:
        print('start predicting...')
        cnt = 0
        if args.use_ema:
            with ema.apply(exe):
                test_pyreader.start()
                pred_buf = []
                while True:
                    try:
                        fetch_res = exe.run(fetch_list=pred_fetch_list, program=test_compiled_program)
                        cnt += 1
                        if cnt % 200 == 0:
                            print('predicting {}th batch...'.format(cnt))
                        fetch_dict = {}
                        for key,val in zip(pred_fetch_names, fetch_res):
                            fetch_dict[key] = val
                        res = postprocess(fetch_dict)
                        if res is not None:
                            pred_buf.extend(res)
                    except fluid.core.EOFException:
                        test_pyreader.reset()
                        break
                global_postprocess(pred_buf, predict_processor, args, main_args)
        else:
            test_pyreader.start()
            pred_buf = []
            while True:
                try:
                    fetch_res = exe.run(fetch_list=pred_fetch_list, program=test_compiled_program)
                    cnt += 1
                    if cnt % 200 == 0:
                        print('predicting {}th batch...'.format(cnt))
                    fetch_dict = {}
                    for key,val in zip(pred_fetch_names, fetch_res):
                        fetch_dict[key] = val
                    res = postprocess(fetch_dict)
                    if res is not None:
                        pred_buf.extend(res)
                except fluid.core.EOFException:
                    test_pyreader.reset()
                    break
            global_postprocess(pred_buf, predict_processor, args, main_args)


if __name__ == '__main__':

    multitask_config = "mtl_config.yaml"
    train(multitask_config)