reader_helper.py 13.0 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import random
W
wangxiao1021 已提交
19
import logging
X
xixiaoyao 已提交
20 21 22 23
import numpy as np
import paddle
from paddle import fluid
from paddle.fluid import layers
W
wangxiao1021 已提交
24 25
from paddlepalm.distribute import gpu_dev_count, cpu_dev_count
dev_count = 1 if gpu_dev_count <= 1 else gpu_dev_count
X
xixiaoyao 已提交
26 27


X
xixiaoyao 已提交
28
def create_feed_batch_process_fn(net_inputs):
W
wangxiao1021 已提交
29 30
    
    def feed_batch_process_fn(data, id=-1, phase='train', is_multi=False):
X
xixiaoyao 已提交
31
        temp = {}
W
wangxiao1021 已提交
32 33 34 35 36 37
        if dev_count > 1 and phase=='train' and is_multi:
            inputs = net_inputs[id]
        else:
            inputs= net_inputs

        for q, var in inputs.items():
X
xixiaoyao 已提交
38 39 40 41 42 43 44 45
            if isinstance(var, str) or isinstance(var, unicode):
                temp[var] = data[q]
            else:
                temp[var.name] = data[q]
        return temp

    return feed_batch_process_fn

W
wangxiao1021 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

# def create_multihead_feed_batch_process_fn(net_inputs):
# 
#     def feed_batch_process_fn(data, id=-1):
#         # temps = {}
#         # for i in range(len(net_inputs)):
#         temp = {}
#         inputs = net_inputs[id] if id != -1 else net_inputs
#         
#         for q, var in inputs.items():
#             if isinstance(var, str) or isinstance(var, unicode):
#                 temp[var] = data[q]
#             else:
#                 temp[var.name] = data[q]
#             # temps[i] = temp
#             
#         return temp
# 
#     return feed_batch_process_fn


def check_io(in_attr, out_attr, strict=False, in_name="left", out_name="right"):
    for name, attr in in_attr.items():
        assert name in out_attr, in_name+': '+name+' not found in '+out_name
        if attr != out_attr[name]:
            if strict:
                raise ValueError(name+': shape or dtype not consistent!')
            else:
                logging.warning('{}: shape or dtype not consistent!\n{}:\n{}\n{}:\n{}'.format(name, in_name, attr, out_name, out_attr[name]))


X
xixiaoyao 已提交
77
def _check_and_adapt_shape_dtype(rt_val, attr, message=""):
X
xixiaoyao 已提交
78
    if not isinstance(rt_val, np.ndarray):
W
wangxiao1021 已提交
79 80
        if rt_val is None:
            raise Exception(message+": get None value. ")
X
xixiaoyao 已提交
81
        rt_val = np.array(rt_val)
W
wangxiao1021 已提交
82
        assert rt_val.dtype != np.dtype('O'), message+"yielded data is not a valid tensor (number of elements on some dimension may not consistent): {}".format(rt_val)
X
xixiaoyao 已提交
83 84 85 86
        if rt_val.dtype == np.dtype('float64'):
            rt_val = rt_val.astype('float32')
    
    shape, dtype = attr
X
xixiaoyao 已提交
87 88
    assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype))
    assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim)
X
xixiaoyao 已提交
89 90 91
    for rt, exp in zip(rt_val.shape, shape):
        if exp is None or exp < 0:
            continue
X
xixiaoyao 已提交
92
        assert rt == exp, "yielded data shape is not consistent with attr settings.Expected:{}Actual:{}".format(exp, rt)
X
xixiaoyao 已提交
93 94 95 96 97 98 99 100 101 102 103 104
    return rt_val
    

def _zero_batch(attrs):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size if size and size > 0 else 1 for size in shape]
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
def _zero_batch_x(attrs, batch_size):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size for size in shape]
        if pos_shape[0] == -1:
            pos_shape[0] = batch_size
        if pos_shape[1] == -1:
            pos_shape[1] = 512 # max seq len
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
118 119 120 121 122 123 124 125 126 127
def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n_prefetch=1):
    inputs = []
    ret = {}
    for name, shape, dtype in input_attrs:
        p = layers.data(name, shape=shape, dtype=dtype)
        ret[name] = p
        inputs.append(p)

    if async:
        assert iterator_fn is not None, "iterator_fn is needed for building async input layer."
X
xixiaoyao 已提交
128
        reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False)
X
xixiaoyao 已提交
129 130 131 132 133 134
        reader.decorate_batch_generator(iterator_fn)
        reader.start()

    return ret


X
xixiaoyao 已提交
135
def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0, return_type='list'):
X
xixiaoyao 已提交
136

X
xixiaoyao 已提交
137 138 139
    pos_to_outname = {j:i for i,j in outname_to_pos.items()}
    
    def iterator_fn():
X
xixiaoyao 已提交
140 141
        v = verbose
        while True:
X
xixiaoyao 已提交
142 143
            # results = _zero_batch(shape_and_dtypes)
            results = [None] * len(outname_to_pos)
X
xixiaoyao 已提交
144 145

            outputs = next(iterator) # dict type
X
xixiaoyao 已提交
146
            prefix = iterator_prefix
X
xixiaoyao 已提交
147
            for outname, val in outputs.items():
X
xixiaoyao 已提交
148
                task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
149 150 151

                if outname in outname_to_pos:
                    idx = outname_to_pos[outname]
X
xixiaoyao 已提交
152
                    val = _check_and_adapt_shape_dtype(val, shape_and_dtypes[idx])
X
xixiaoyao 已提交
153 154 155 156
                    results[idx] = val

                if task_outname in outname_to_pos:
                    idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
157
                    val = _check_and_adapt_shape_dtype(val, shape_and_dtypes[idx])
X
xixiaoyao 已提交
158
                    results[idx] = val
X
xixiaoyao 已提交
159 160 161 162 163 164
            if return_type == 'list':
                yield results
            elif return_type == 'dict':
                temp = {}
                for pos, i in enumerate(results):
                    temp[pos_to_outname[pos]] = i
X
xixiaoyao 已提交
165

X
xixiaoyao 已提交
166
                yield temp
X
xixiaoyao 已提交
167

X
xixiaoyao 已提交
168
    return iterator_fn
X
xixiaoyao 已提交
169

W
wangxiao1021 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def create_multihead_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, names, outname_to_pos, dev_count=1, keep_one_task=True):
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    def iterator():
        while True:
            id = np.random.choice(task_ids, p=weights)
            task_id_tensor = np.array([id]).astype("int64")
            
            for i in range(dev_count):
                
                outputs = next(iterators[id]) # dict type

                prefix = iterator_prefixes[id]
                results = {}
                results['__task_id'] = task_id_tensor
                for outname, val in outputs.items():
                    task_outname = prefix + '.' + outname

                    if outname in names[id]:
                        idx = outname_to_pos[id][outname]
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[id][idx], message=outname+': ')
                        results[outname] = val

                    if task_outname in names[id]:
                        idx = outname_to_pos[id][task_outname]
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[id][idx], message=task_outname+': ')
                        results[task_outname] = val

                yield results

    return iterator

X
xixiaoyao 已提交
205

X
xixiaoyao 已提交
206
def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0):
X
xixiaoyao 已提交
207 208 209
    """
        joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查
    """
X
xixiaoyao 已提交
210

X
xixiaoyao 已提交
211 212 213 214 215 216 217 218 219 220 221 222
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    results = _zero_batch(joint_shape_and_dtypes)
    outbuf = {}
    for id in task_ids:
        outputs = next(iterators[id]) # dict type
        outbuf[id] = outputs
        prefix = iterator_prefixes[id]
        for outname, val in outputs.items():
X
xixiaoyao 已提交
223
            task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
224 225 226

            if outname in outname_to_pos:
                idx = outname_to_pos[outname]
X
xixiaoyao 已提交
227
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
228 229 230 231
                results[idx] = val

            if task_outname in outname_to_pos:
                idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
232
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
233 234 235 236 237 238 239
                results[idx] = val

    fake_batch = results
    dev_count_bak = dev_count

    def iterator():
        v = verbose
X
xixiaoyao 已提交
240
        has_show_warn = False
X
xixiaoyao 已提交
241 242 243 244 245 246 247 248 249
        while True:
            id = np.random.choice(task_ids, p=weights)
            results = fake_batch
            if v > 0:
                print('----- debug joint iterator -----')
                print('sampled task id: '+str(id))
            task_id_tensor = np.array([[id]]).astype("int64")
            
            for i in range(dev_count):
X
xixiaoyao 已提交
250 251 252 253
                
                results[outname_to_pos['__task_id']] = task_id_tensor
                assert outname_to_pos['__task_id'] == 0

X
xixiaoyao 已提交
254 255 256 257 258 259
                if id in outbuf:
                    outputs = outbuf[id]
                    del outbuf[id]
                else:
                    outputs = next(iterators[id]) # dict type

X
xixiaoyao 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                if 'token_ids' in outputs:
                    val1 = len(outputs['token_ids'])
                    val = _check_and_adapt_shape_dtype([val1], [[1], 'int64'])
                    results[outname_to_pos['batch_size']] = val

                    val2 = len(outputs['token_ids'][0])
                    val = _check_and_adapt_shape_dtype([val2], [[1], 'int64'])
                    results[outname_to_pos['seqlen']] = val

                    val = _check_and_adapt_shape_dtype([val1*val2], [[1], 'int64'])
                    results[outname_to_pos['batchsize_x_seqlen']] = val
                else:
                    if not has_show_warn:
                        print('WARNING: token_ids not found in current batch, failed to yield batch_size, seqlen and batchsize_x_seqlen. (This message would be shown only once.)')
                        has_show_warn = True
X
xixiaoyao 已提交
275

X
xixiaoyao 已提交
276 277 278 279
                prefix = iterator_prefixes[id]
                for outname, val in outputs.items():
                    if v > 0:
                        print('reader generate: '+outname)
X
xixiaoyao 已提交
280
                    task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
281 282 283 284 285

                    if outname in outname_to_pos:
                        idx = outname_to_pos[outname]
                        if v > 0:
                            print(outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
286
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
287 288 289 290 291 292
                        results[idx] = val

                    if task_outname in outname_to_pos:
                        idx = outname_to_pos[task_outname]
                        if v > 0:
                            print(task_outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
293
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307
                        results[idx] = val

                if v > 0:
                    print('yielded batch len and shapes:')
                    print(len(results))
                    for i in results:
                        print(np.shape(i))
                    print('')
                    v -= 1
                yield results

    return iterator


W
wangxiao1021 已提交
308
def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True, insert_batchsize=False, insert_seqlen=False, insert_batchsize_x_seqlen=False):
X
xixiaoyao 已提交
309 310 311 312 313 314 315
    """
    Args:
        task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks
    """
    if isinstance(task_attrs, dict):
        task_attrs = [task_attrs]

X
xixiaoyao 已提交
316 317 318
    ret = []
    names = []
    start = 0
X
xixiaoyao 已提交
319
    if insert_taskid:
W
wangxiao1021 已提交
320
        ret.append(([1, 1], 'int64'))
X
xixiaoyao 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        names.append('__task_id')
        start += 1
    
    if insert_batchsize:
        ret.append(([1], 'int64'))
        names.append('batch_size')
        start += 1

    if insert_seqlen:
        ret.append(([1], 'int64'))
        names.append('seqlen')
        start += 1

    if insert_batchsize_x_seqlen:
        ret.append(([1], 'int64'))
X
xixiaoyao 已提交
336
        names.append(u'batchsize_x_seqlen')
X
xixiaoyao 已提交
337
        start += 1
X
xixiaoyao 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351
        
    names += sorted(backbone_attr.keys())
    ret.extend([backbone_attr[k] for k in names[start:]])
    name_to_position = {}
    # pos=0 is for task_id, thus we start from 1
    for pos, k in enumerate(names):
        name_to_position[k] = pos
    for task_attr in task_attrs:
        task_names = sorted(task_attr.keys())
        names.extend(task_names)
        ret.extend([task_attr[k] for k in task_names])
        for pos, k in enumerate(task_names, start=len(name_to_position)):
            name_to_position[k] = pos
    return names, ret, name_to_position