README.md 10.4 KB
Newer Older
X
Xiaoyao Xi 已提交
1
# PaddlePALM
X
xixiaoyao 已提交
2

X
Xiaoyao Xi 已提交
3 4
English | [简体中文](./README_cn.md)

X
Xiaoyao Xi 已提交
5
PaddlePALM (PArallel Learning from Multi-tasks) is a flexible, general and easy-to-use NLP large-scale pretraining and multi-task learning friendly framework. PALM is a high level framework aiming at **fastly** develop **high-performance** NLP models. 
W
wangxiao1021 已提交
6

X
Xiaoyao Xi 已提交
7
With PaddlePALM, it is easy to achieve effecient exploration of robust learning of reading comprehension models with multiple auxilary tasks, and the produced model, [D-Net](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/MRQA2019-D-NET), achieve **the 1st place** in [EMNLP2019 MRQA](https://mrqa.github.io) track.
X
Xiaoyao Xi 已提交
8

X
Xiaoyao Xi 已提交
9
<p align="center">
X
Xiaoyao Xi 已提交
10
	<img src="https://tva1.sinaimg.cn/large/006tNbRwly1gbjkuuwrmlj30hs0hzdh2.jpg" alt="Sample"  width="300" height="333">
X
Xiaoyao Xi 已提交
11
	<p align="center">
X
Xiaoyao Xi 已提交
12
		<em>MRQA2019 Leaderboard</em>
X
Xiaoyao Xi 已提交
13 14 15
	</p>
</p>

X
Xiaoyao Xi 已提交
16 17
Beyond the research scope, PaddlePALM has been applied on **Baidu Search Engine** to seek for more accurate user query understanding and answer mining, which implies the high reliability and performance of PaddlePALM.

X
Xiaoyao Xi 已提交
18
#### Features:
X
Xiaoyao Xi 已提交
19 20 21 22 23 24 25

- **Easy-to-use:** with PALM, *8 steps* to achieve a typical NLP task. Moreover, the model backbone, dataset reader and task output layers have been decoupled, which allows the replacement of any component to other candidates with quite minor changes of your code. 
- **Multi-task Learning friendly:** *6 steps* to achieve multi-task learning for prepared tasks. 
- **Large Scale and Pre-training freiendly:** automatically utilize multi-gpus (if exists) to accelerate training and inference. Minor codes is required for distributed training on clusters.
- **Popular NLP Backbones and Pre-trained models:** multiple state-of-the-art general purpose model architectures and pretrained models (e.g., BERT,ERNIE,RoBERTa,...) are built-in. 
- **Easy to Customize:** support customized development of any component (e.g, backbone, task head, reader and optimizer) with reusement of pre-defined ones, which gives developers high flexibility and effeciency to adapt for diverse NLP scenes. 

X
Xiaoyao Xi 已提交
26
You can easily re-produce following competitive results with minor codes, which covers most of NLP tasks such as classification, matching, sequence labeling, reading comprehension, dialogue understanding and so on. More details can be found in `examples`.
W
wangxiao1021 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

<table>
  <tbody>
    <tr>
      <th><strong>Dataset</strong>
        <br></th>
      <th colspan="3"><center><strong>chnsenticorp</strong></center></th>
      <th colspan="3"><center><strong>Quora Question Pairs matching</strong><center></th>
      <th colspan="3"><strong>MSRA-NER<br>(SIGHAN2006)</strong></th>
      <th colspan="2"><strong>CMRC2018</strong></th>
    </tr>
    <tr>
      <td rowspan="2">
        <p>
          <strong>Metric</strong>
          <br></p>
      </td>
      <td colspan="1">
        <center><strong>precision</strong></center>
        <br></td>
      <td colspan="1">
        <strong>recall</strong>
        <br></td>
      <td colspan="1">
        <strong>f1-score</strong>
        <strong></strong>
        <br></td>
      <td colspan="1">
        <center><strong>precision</strong></center>
        <br></td>
      <td colspan="1">
        <strong>recall</strong>
        <br></td>
      <td colspan="1">
        <strong>f1-score</strong>
        <strong></strong>
        <br></td>
      <td colspan="1">
        <center><strong>precision</strong></center>
        <br></td>
      <td colspan="1">
        <strong>recall</strong>
        <br></td>
      <td colspan="1">
        <strong>f1-score</strong>
        <strong></strong>
        <br></td>
      <td colspan="1">
        <strong>em</strong>
        <br></td>
      <td colspan="1">
        <strong>f1-score</strong>
        <br></td>
    </tr>
    <tr>
      <td colspan="3" width="">
        <strong>test</strong>
        <br></td>
      <td colspan="3" width="">
        <strong>test</strong>
        <br></td>
      <td colspan="3" width="">
        <strong>test</strong>
        <br></td>
      <td colspan="2" width="">
        <strong>dev</strong>
        <br></td>
    </tr>
    <tr>
      <td><strong>ERNIE Base</strong></td>
      <td>95.7</td>
      <td>95.0</td>
      <td>95.7</td>
      <td>85.8</td>
      <td>82.4</td>
      <td>81.5</td>
      <td>94.9</td>
      <td>94.5</td>
      <td>94.7</td>
      <td>96.3</td>
      <td>84.0</td>
    </tr>

  </tbody>
</table>


X
Xiaoyao Xi 已提交
114

W
wangxiao1021 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
## Package Overview

| module | illustration | 
| - | - |
| **paddlepalm** | an open source NLP pretraining and multitask learning framework, built on paddlepaddle. |
| **paddlepalm.reader** | a collection of elastic task-specific dataset readers. |
| **paddlepalm.backbone** | a collection of classic NLP representation models, e.g., BERT, ERNIE, RoBERTa. |
| **paddlepalm.head** | a collection of task-specific output layers. |
| **paddlepalm.lr_sched** | a collection of learning rate schedualers. |
| **paddlepalm.optimizer** | a collection of optimizers. |
| **paddlepalm.downloader** | a download module for pretrained models with configure and vocab files. |
| **paddlepalm.Trainer** | the core unit to start a single task training/predicting session. A trainer is to build computation graph, manage training and evaluation process, achieve model/checkpoint saving and pretrain_model/checkpoint loading.|
| **paddlepalm.MultiHeadTrainer** | the core unit to start a multi-task training/predicting session. A MultiHeadTrainer is built based on several Trainers. Beyond the inheritance of Trainer, it additionally achieves model backbone reuse across tasks, trainer sampling for multi-task learning, and multi-head inference for effective evaluation and prediction. |


## Installation

X
Xiaoyao Xi 已提交
132
PaddlePALM support both python2 and python3, linux and windows, CPU and GPU. The preferred way to install PaddlePALM is via `pip`. Just run following commands in your shell.
W
wangxiao1021 已提交
133 134

```bash
X
xixiaoyao 已提交
135
pip install paddlepalm
X
Xiaoyao Xi 已提交
136 137
```

W
wangxiao1021 已提交
138
### Installing via source
X
Xiaoyao Xi 已提交
139 140 141

```shell
git clone https://github.com/PaddlePaddle/PALM.git
X
Xiaoyao Xi 已提交
142
cd PALM && python setup.py install
X
Xiaoyao Xi 已提交
143 144
```

W
wangxiao1021 已提交
145
### Library Dependencies
X
Xiaoyao Xi 已提交
146
- Python >= 2.7
X
Xiaoyao Xi 已提交
147 148
- cuda >= 9.0
- cudnn >= 7.0
X
Xiaoyao Xi 已提交
149
- PaddlePaddle >= 1.7.0 (Please refer to [this](http://www.paddlepaddle.org/#quick-start) to install)
X
Xiaoyao Xi 已提交
150 151


W
wangxiao1021 已提交
152 153
### Downloading pretrain models
We incorporate many pretrained models to initialize model backbone parameters. Training big NLP model, e.g., 12-layer transformers, with pretrained models is practically much more effective than that with randomly initialized parameters. To see all the available pretrained models and download, run following code in python interpreter (input command `python` in shell):
X
Xiaoyao Xi 已提交
154

X
Xiaoyao Xi 已提交
155
```python
W
wangxiao1021 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
>>> from paddlepalm import downloader
>>> downloader.ls('pretrain')
Available pretrain items:
  => roberta-cn-base
  => roberta-cn-large
  => bert-cn-base
  => bert-cn-large
  => bert-en-uncased-base
  => bert-en-uncased-large
  => bert-en-cased-base
  => bert-en-cased-large
  => ernie-en-uncased-base
  => ernie-en-uncased-large
  ...

>>> downloader.download('pretrain', 'bert-en-uncased-base', './pretrain_models')
X
Xiaoyao Xi 已提交
172 173 174
...
```

X
Xiaoyao Xi 已提交
175

W
wangxiao1021 已提交
176
## Usage
X
Xiaoyao Xi 已提交
177

W
wangxiao1021 已提交
178
8 steps to start a typical NLP training task.
X
Xiaoyao Xi 已提交
179

W
wangxiao1021 已提交
180 181 182 183 184 185 186 187
1. use `paddlepalm.reader` to create a *reader* for dataset loading and input features generation, then call `reader.load_data` method to load your training data.
2. use `paddlepalm.backbone` to create a model *backbone* to extract text features (e.g., contextual word embedding, sentence embedding).
3. register your *reader* with your *backbone* through `reader.register_with` method. After this step, your reader is able to yield input features used by backbone.
4. use `paddlepalm.head` to create a task output *head*. This head can provide task loss for training and predicting results for model inference.
5. create a task *trainer* with `paddlepalm.Trainer`, then build forward graph with backbone and task head (created in step 2 and 4) through `trainer.build_forward`.
6. use `paddlepalm.optimizer` (and `paddlepalm.lr_sched` if is necessary) to create a *optimizer*, then build backward through `trainer.build_backward`.
7. fit prepared reader and data (achieved in step 1) to trainer with `trainer.fit_reader` method.
8. load pretrain model with `trainer.load_pretrain`, or load checkpoint with `trainer.load_ckpt` or nothing to do for training from scratch, then do training with `trainer.train`.
X
Xiaoyao Xi 已提交
188

X
Xiaoyao Xi 已提交
189
For more implementation details, see following demos: 
X
Xiaoyao Xi 已提交
190

W
wangxiao1021 已提交
191 192 193 194
- [Sentiment Classification](https://github.com/PaddlePaddle/PALM/tree/master/examples/classification)
- [Quora Question Pairs matching](https://github.com/PaddlePaddle/PALM/tree/master/examples/matching)
- [Tagging](https://github.com/PaddlePaddle/PALM/tree/master/examples/tagging)
- [SQuAD machine Reading Comprehension](https://github.com/PaddlePaddle/PALM/tree/master/examples/mrc).
X
Xiaoyao Xi 已提交
195

X
Xiaoyao Xi 已提交
196
### set saver
X
Xiaoyao Xi 已提交
197

W
wangxiao1021 已提交
198
To save models/checkpoints and logs during training, just call `trainer.set_saver` method. More implementation details see [this](https://github.com/PaddlePaddle/PALM/tree/master/examples).
X
Xiaoyao Xi 已提交
199

X
Xiaoyao Xi 已提交
200
### do prediction
W
wangxiao1021 已提交
201
To do predict/evaluation after a training stage, just create another three reader, backbone and head instance with `phase='predict'` (repeat step 1~4 above). Then do predicting with `predict` method in trainer (no need to create another trainer). More implementation details see [this](https://github.com/PaddlePaddle/PALM/tree/master/examples/predict).
X
Xiaoyao Xi 已提交
202

X
Xiaoyao Xi 已提交
203
### multi-task learning
W
wangxiao1021 已提交
204
To run with multi-task learning mode:
X
Xiaoyao Xi 已提交
205

W
wangxiao1021 已提交
206 207 208 209 210 211
1. repeatedly create components (i.e., reader, backbone and head) for each task followed with step 1~5 above. 
2. create empty trainers (each trainer is corresponded to one task) and pass them to create a `MultiHeadTrainer`. 
3. build multi-task forward graph with `multi_head_trainer.build_forward` method.
4. use `paddlepalm.optimizer` (and `paddlepalm.lr_sched` if is necessary) to create a *optimizer*, then build backward through `multi_head_trainer.build_backward`.
5. fit all prepared readers and data to multi_head_trainer with `multi_head_trainer.fit_readers` method.
6. randomly initialize model parameters with `multi_head_trainer.random_init_params` (and `multi_head_trainer.load_pretrain` if needed), then do training with `multi_head_trainer.train`.
X
Xiaoyao Xi 已提交
212

W
wangxiao1021 已提交
213
The save/load and predict operations of a multi_head_trainer is the same as a trainer.
X
Xiaoyao Xi 已提交
214

X
Xiaoyao Xi 已提交
215
For more implementation details with `multi_head_trainer`, see
X
Xiaoyao Xi 已提交
216

W
wangxiao1021 已提交
217
- [ATIS: joint training of dialogue intent recognition and slot filling](https://github.com/PaddlePaddle/PALM/tree/master/examples/multi-task)
X
Xiaoyao Xi 已提交
218

X
Xiaoyao Xi 已提交
219

X
Xiaoyao Xi 已提交
220 221 222 223
## License

This tutorial is contributed by [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) and licensed under the [Apache-2.0 license](https://github.com/PaddlePaddle/models/blob/develop/LICENSE).