reader_helper.py 13.1 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import random
W
wangxiao1021 已提交
19
import logging
X
xixiaoyao 已提交
20 21 22 23
import numpy as np
import paddle
from paddle import fluid
from paddle.fluid import layers
W
wangxiao1021 已提交
24
from paddlepalm.distribute import gpu_dev_count, cpu_dev_count
W
wangxiao1021 已提交
25
import six
W
wangxiao1021 已提交
26
dev_count = 1 if gpu_dev_count <= 1 else gpu_dev_count
X
xixiaoyao 已提交
27 28


X
xixiaoyao 已提交
29
def create_feed_batch_process_fn(net_inputs):
W
wangxiao1021 已提交
30 31
    
    def feed_batch_process_fn(data, id=-1, phase='train', is_multi=False):
X
xixiaoyao 已提交
32
        temp = {}
W
wangxiao1021 已提交
33 34 35 36 37 38
        if dev_count > 1 and phase=='train' and is_multi:
            inputs = net_inputs[id]
        else:
            inputs= net_inputs

        for q, var in inputs.items():
W
wangxiao1021 已提交
39 40
            
            if isinstance(var, str) or (six.PY3 and isinstance(var, bytes)) or (six.PY2 and isinstance(var, unicode)):
X
xixiaoyao 已提交
41 42 43 44 45 46 47
                temp[var] = data[q]
            else:
                temp[var.name] = data[q]
        return temp

    return feed_batch_process_fn

W
wangxiao1021 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

# def create_multihead_feed_batch_process_fn(net_inputs):
# 
#     def feed_batch_process_fn(data, id=-1):
#         # temps = {}
#         # for i in range(len(net_inputs)):
#         temp = {}
#         inputs = net_inputs[id] if id != -1 else net_inputs
#         
#         for q, var in inputs.items():
#             if isinstance(var, str) or isinstance(var, unicode):
#                 temp[var] = data[q]
#             else:
#                 temp[var.name] = data[q]
#             # temps[i] = temp
#             
#         return temp
# 
#     return feed_batch_process_fn


def check_io(in_attr, out_attr, strict=False, in_name="left", out_name="right"):
    for name, attr in in_attr.items():
        assert name in out_attr, in_name+': '+name+' not found in '+out_name
        if attr != out_attr[name]:
            if strict:
                raise ValueError(name+': shape or dtype not consistent!')
            else:
                logging.warning('{}: shape or dtype not consistent!\n{}:\n{}\n{}:\n{}'.format(name, in_name, attr, out_name, out_attr[name]))


X
xixiaoyao 已提交
79
def _check_and_adapt_shape_dtype(rt_val, attr, message=""):
X
xixiaoyao 已提交
80
    if not isinstance(rt_val, np.ndarray):
W
wangxiao1021 已提交
81 82
        if rt_val is None:
            raise Exception(message+": get None value. ")
X
xixiaoyao 已提交
83
        rt_val = np.array(rt_val)
W
wangxiao1021 已提交
84
        assert rt_val.dtype != np.dtype('O'), message+"yielded data is not a valid tensor (number of elements on some dimension may not consistent): {}".format(rt_val)
X
xixiaoyao 已提交
85 86 87 88
        if rt_val.dtype == np.dtype('float64'):
            rt_val = rt_val.astype('float32')
    
    shape, dtype = attr
X
xixiaoyao 已提交
89 90
    assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype))
    assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim)
X
xixiaoyao 已提交
91 92 93
    for rt, exp in zip(rt_val.shape, shape):
        if exp is None or exp < 0:
            continue
X
xixiaoyao 已提交
94
        assert rt == exp, "yielded data shape is not consistent with attr settings.Expected:{}Actual:{}".format(exp, rt)
X
xixiaoyao 已提交
95 96 97 98 99 100 101 102 103 104 105 106
    return rt_val
    

def _zero_batch(attrs):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size if size and size > 0 else 1 for size in shape]
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119
def _zero_batch_x(attrs, batch_size):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size for size in shape]
        if pos_shape[0] == -1:
            pos_shape[0] = batch_size
        if pos_shape[1] == -1:
            pos_shape[1] = 512 # max seq len
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


W
wangxiao1021 已提交
120
def create_net_inputs(input_attrs, is_async=False, iterator_fn=None, dev_count=1, n_prefetch=1):
X
xixiaoyao 已提交
121 122 123 124 125 126 127
    inputs = []
    ret = {}
    for name, shape, dtype in input_attrs:
        p = layers.data(name, shape=shape, dtype=dtype)
        ret[name] = p
        inputs.append(p)

W
wangxiao1021 已提交
128
    if is_async:
X
xixiaoyao 已提交
129
        assert iterator_fn is not None, "iterator_fn is needed for building async input layer."
X
xixiaoyao 已提交
130
        reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False)
X
xixiaoyao 已提交
131 132 133 134 135 136
        reader.decorate_batch_generator(iterator_fn)
        reader.start()

    return ret


X
xixiaoyao 已提交
137
def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0, return_type='list'):
X
xixiaoyao 已提交
138

X
xixiaoyao 已提交
139 140 141
    pos_to_outname = {j:i for i,j in outname_to_pos.items()}
    
    def iterator_fn():
X
xixiaoyao 已提交
142 143
        v = verbose
        while True:
X
xixiaoyao 已提交
144 145
            # results = _zero_batch(shape_and_dtypes)
            results = [None] * len(outname_to_pos)
X
xixiaoyao 已提交
146 147

            outputs = next(iterator) # dict type
X
xixiaoyao 已提交
148
            prefix = iterator_prefix
X
xixiaoyao 已提交
149
            for outname, val in outputs.items():
X
xixiaoyao 已提交
150
                task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
151 152 153

                if outname in outname_to_pos:
                    idx = outname_to_pos[outname]
X
xixiaoyao 已提交
154
                    val = _check_and_adapt_shape_dtype(val, shape_and_dtypes[idx])
X
xixiaoyao 已提交
155 156 157 158
                    results[idx] = val

                if task_outname in outname_to_pos:
                    idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
159
                    val = _check_and_adapt_shape_dtype(val, shape_and_dtypes[idx])
X
xixiaoyao 已提交
160
                    results[idx] = val
X
xixiaoyao 已提交
161 162 163 164 165 166
            if return_type == 'list':
                yield results
            elif return_type == 'dict':
                temp = {}
                for pos, i in enumerate(results):
                    temp[pos_to_outname[pos]] = i
X
xixiaoyao 已提交
167

X
xixiaoyao 已提交
168
                yield temp
X
xixiaoyao 已提交
169

X
xixiaoyao 已提交
170
    return iterator_fn
X
xixiaoyao 已提交
171

W
wangxiao1021 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
def create_multihead_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, names, outname_to_pos, dev_count=1, keep_one_task=True):
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    def iterator():
        while True:
            id = np.random.choice(task_ids, p=weights)
            task_id_tensor = np.array([id]).astype("int64")
            
            for i in range(dev_count):
                
                outputs = next(iterators[id]) # dict type

                prefix = iterator_prefixes[id]
                results = {}
                results['__task_id'] = task_id_tensor
                for outname, val in outputs.items():
                    task_outname = prefix + '.' + outname

                    if outname in names[id]:
                        idx = outname_to_pos[id][outname]
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[id][idx], message=outname+': ')
                        results[outname] = val

                    if task_outname in names[id]:
                        idx = outname_to_pos[id][task_outname]
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[id][idx], message=task_outname+': ')
                        results[task_outname] = val

                yield results

    return iterator

X
xixiaoyao 已提交
207

X
xixiaoyao 已提交
208
def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0):
X
xixiaoyao 已提交
209 210 211
    """
        joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查
    """
X
xixiaoyao 已提交
212

X
xixiaoyao 已提交
213 214 215 216 217 218 219 220 221 222 223 224
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    results = _zero_batch(joint_shape_and_dtypes)
    outbuf = {}
    for id in task_ids:
        outputs = next(iterators[id]) # dict type
        outbuf[id] = outputs
        prefix = iterator_prefixes[id]
        for outname, val in outputs.items():
X
xixiaoyao 已提交
225
            task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
226 227 228

            if outname in outname_to_pos:
                idx = outname_to_pos[outname]
X
xixiaoyao 已提交
229
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
230 231 232 233
                results[idx] = val

            if task_outname in outname_to_pos:
                idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
234
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
235 236 237 238 239 240 241
                results[idx] = val

    fake_batch = results
    dev_count_bak = dev_count

    def iterator():
        v = verbose
X
xixiaoyao 已提交
242
        has_show_warn = False
X
xixiaoyao 已提交
243 244 245 246 247 248 249 250 251
        while True:
            id = np.random.choice(task_ids, p=weights)
            results = fake_batch
            if v > 0:
                print('----- debug joint iterator -----')
                print('sampled task id: '+str(id))
            task_id_tensor = np.array([[id]]).astype("int64")
            
            for i in range(dev_count):
X
xixiaoyao 已提交
252 253 254 255
                
                results[outname_to_pos['__task_id']] = task_id_tensor
                assert outname_to_pos['__task_id'] == 0

X
xixiaoyao 已提交
256 257 258 259 260 261
                if id in outbuf:
                    outputs = outbuf[id]
                    del outbuf[id]
                else:
                    outputs = next(iterators[id]) # dict type

X
xixiaoyao 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                if 'token_ids' in outputs:
                    val1 = len(outputs['token_ids'])
                    val = _check_and_adapt_shape_dtype([val1], [[1], 'int64'])
                    results[outname_to_pos['batch_size']] = val

                    val2 = len(outputs['token_ids'][0])
                    val = _check_and_adapt_shape_dtype([val2], [[1], 'int64'])
                    results[outname_to_pos['seqlen']] = val

                    val = _check_and_adapt_shape_dtype([val1*val2], [[1], 'int64'])
                    results[outname_to_pos['batchsize_x_seqlen']] = val
                else:
                    if not has_show_warn:
                        print('WARNING: token_ids not found in current batch, failed to yield batch_size, seqlen and batchsize_x_seqlen. (This message would be shown only once.)')
                        has_show_warn = True
X
xixiaoyao 已提交
277

X
xixiaoyao 已提交
278 279 280 281
                prefix = iterator_prefixes[id]
                for outname, val in outputs.items():
                    if v > 0:
                        print('reader generate: '+outname)
X
xixiaoyao 已提交
282
                    task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
283 284 285 286 287

                    if outname in outname_to_pos:
                        idx = outname_to_pos[outname]
                        if v > 0:
                            print(outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
288
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
289 290 291 292 293 294
                        results[idx] = val

                    if task_outname in outname_to_pos:
                        idx = outname_to_pos[task_outname]
                        if v > 0:
                            print(task_outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
295
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309
                        results[idx] = val

                if v > 0:
                    print('yielded batch len and shapes:')
                    print(len(results))
                    for i in results:
                        print(np.shape(i))
                    print('')
                    v -= 1
                yield results

    return iterator


W
wangxiao1021 已提交
310
def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True, insert_batchsize=False, insert_seqlen=False, insert_batchsize_x_seqlen=False):
X
xixiaoyao 已提交
311 312 313 314 315 316 317
    """
    Args:
        task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks
    """
    if isinstance(task_attrs, dict):
        task_attrs = [task_attrs]

X
xixiaoyao 已提交
318 319 320
    ret = []
    names = []
    start = 0
X
xixiaoyao 已提交
321
    if insert_taskid:
W
wangxiao1021 已提交
322
        ret.append(([1, 1], 'int64'))
X
xixiaoyao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        names.append('__task_id')
        start += 1
    
    if insert_batchsize:
        ret.append(([1], 'int64'))
        names.append('batch_size')
        start += 1

    if insert_seqlen:
        ret.append(([1], 'int64'))
        names.append('seqlen')
        start += 1

    if insert_batchsize_x_seqlen:
        ret.append(([1], 'int64'))
X
xixiaoyao 已提交
338
        names.append(u'batchsize_x_seqlen')
X
xixiaoyao 已提交
339
        start += 1
X
xixiaoyao 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353
        
    names += sorted(backbone_attr.keys())
    ret.extend([backbone_attr[k] for k in names[start:]])
    name_to_position = {}
    # pos=0 is for task_id, thus we start from 1
    for pos, k in enumerate(names):
        name_to_position[k] = pos
    for task_attr in task_attrs:
        task_names = sorted(task_attr.keys())
        names.extend(task_names)
        ret.extend([task_attr[k] for k in task_names])
        for pos, k in enumerate(task_names, start=len(name_to_position)):
            name_to_position[k] = pos
    return names, ret, name_to_position