saver.py 2.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import six
import ast
import copy
X
xixiaoyao 已提交
22 23
import tarfile
import shutil
X
xixiaoyao 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

import numpy as np
import paddle.fluid as fluid

def init_checkpoint(exe, init_checkpoint_path, main_program, skip_list = []):
    assert os.path.exists(
        init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path

    def existed_persitables(var):
        if not fluid.io.is_persistable(var):
            return False
        if var.name in skip_list:
            return False
        return os.path.exists(os.path.join(init_checkpoint_path, var.name))

    fluid.io.load_vars(
        exe,
        init_checkpoint_path,
        main_program=main_program,
        predicate=existed_persitables)
    print("Load model from {}".format(init_checkpoint_path))


def init_pretraining_params(exe,
                            pretraining_params_path,
                            main_program):
    assert os.path.exists(pretraining_params_path
                          ), "[%s] cann't be found." % pretraining_params_path

X
xixiaoyao 已提交
53 54 55 56 57 58 59 60 61 62

    assert os.path.exists(os.path.join(pretraining_params_path, '__palmmodel__')), "__palmmodel__ not found."
    print("Loading pretraining parameters from {}...".format(
        pretraining_params_path))

    with tarfile.open(os.path.join(pretraining_params_path, '__palmmodel__'), 'r:') as f:
        f.extractall(os.path.join(pretraining_params_path, '.temp'))

    pretraining_params_path = os.path.join(pretraining_params_path, '.temp')

X
xixiaoyao 已提交
63 64 65
    def existed_params(var):
        if not isinstance(var, fluid.framework.Parameter):
            return False
X
xixiaoyao 已提交
66 67
        if not os.path.exists(os.path.join(pretraining_params_path, var.name)):
            print('Warning: {} not found in {}.'.format(var.name, pretraining_params_path))
X
xixiaoyao 已提交
68 69 70 71 72 73 74 75
        return os.path.exists(os.path.join(pretraining_params_path, var.name))

    fluid.io.load_vars(
        exe,
        pretraining_params_path,
        main_program=main_program,
        predicate=existed_params)

X
xixiaoyao 已提交
76 77 78
    shutil.rmtree(pretraining_params_path)
    print('')

X
xixiaoyao 已提交
79