# 如何写新的C++ OP
## 概念简介
简单介绍需要用到基类,详细介绍请参考[设计文档](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/motivation/refactorization.md#operatoropwithkernelopkernel)。
- `framework::OperatorBase`: Operator(简写,Op)基类。
- `framework::OpKernel`: Op计算函数的基类,称作Kernel。
- `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。
- `framework::OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成。
根据是否包含Kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op:
- 包含Kernel的Op继承自`OperatorWithKernel`,这类Op的功能实现与输入的数据类型、数据布局、数据所在的设备以及Op实现所调用第三方库等有关。比如ConvOp,如果使用CPU计算,一般通过调用mkl库中的矩阵乘操作实现,如果使用GPU计算,一般通过调用cublas库中的矩阵乘操作实现,或者直接调用cudnn库中的卷积操作。
- 不包含Kernel的Op继承自`OperatorBase`,因为这类Op的功能实现与设备以及输入的数据不相关。比如WhileOp、IfElseOp等。
本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
内容 |
定义位置 |
OpProtoMake定义 |
.cc 文件 |
Op定义 |
.cc 文件 |
Kernel实现 |
CPU、CUDA共享Kernel实现在.h 文件中,否则,CPU 实现在.cc 文件中,CUDA 实现在.cu 文件中。 |
注册Op |
Op注册实现在.cc 文件;Kernel注册CPU实现在.cc 文件中,CUDA实现在.cu 文件中 |
实现新的op都添加至目录[paddle/fluid/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/operators)下,文件命名以`*_op.h`(如有)、`*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。
## 实现C++类
### 定义ProtoMaker类
矩阵乘法的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。
首先定义`ProtoMaker`来描述该Op的输入、输出,并添加注释:
```cpp
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The first input tensor of mul op.");
AddInput("Y", "(Tensor), The second input tensor of mul op.");
AddOutput("Out", "(Tensor), The output tensor of mul op.");
AddAttr("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr(
"x_num_col_dims",
R"DOC((int, default 1), The mul_op can take tensors with more than two
dimensions as its inputs. If the input $X$ is a tensor with more
than two dimensions, $X$ will be flattened into a two-dimensional
matrix first. The flattening rule is: the first `num_col_dims`
will be flattened to form the first dimension of the final matrix
(the height of the matrix), and the rest `rank(X) - num_col_dims`
dimensions are flattened to form the second dimension of the final
matrix (the width of the matrix). As a result, height of the
flattened matrix is equal to the product of $X$'s first
`x_num_col_dims` dimensions' sizes, and width of the flattened
matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
dimensions' size. For example, suppose $X$ is a 6-dimensional
tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
[24, 30].
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddAttr(
"y_num_col_dims",
R"DOC((int, default 1), The mul_op can take tensors with more than two,
dimensions as its inputs. If the input $Y$ is a tensor with more
than two dimensions, $Y$ will be flattened into a two-dimensional
matrix first. The attribute `y_num_col_dims` determines how $Y$ is
flattened. See comments of `x_num_col_dims` for more details.
)DOC")
.SetDefault(1)
.EqualGreaterThan(1);
AddAttr(
"scale_x",
"scale_x to be used for int8 mul input data x. scale_x has the"
"same purpose as scale_in in OPs that support quantization."
"Only to be used with MKL-DNN INT8")
.SetDefault(1.0f);
AddAttr>(
"scale_y",
"scale_y to be used for int8 mul input data y. scale_y has the"
"same purpose as scale_weights in OPs that support quantization."
"Only to be used with MKL-DNN INT8")
.SetDefault({1.0f});
AddAttr("scale_out",
"scale_out to be used for int8 output data."
"Only used with MKL-DNN INT8")
.SetDefault(1.0f);
AddAttr(
"force_fp32_output",
"(bool, default false) Force quantize kernel output FP32, only "
"used in quantized MKL-DNN.")
.SetDefault(false);
AddComment(R"DOC(
Mul Operator.
This operator is used to perform matrix multiplication for input $X$ and $Y$.
The equation is:
$$Out = X * Y$$
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
)DOC");
}
};
```
[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/mul_op.cc)继承自`framework::OpProtoAndCheckerMaker`。
开发者通过覆盖`framework::OpProtoAndCheckerMaker`中的`Make`函数来定义Op所对应的Proto,通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddAttr`添加属性参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。
上面的代码在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,以及`use_mkldnn`等属性,并解释了各自含义,命名请遵守[命名规范](https://github.com/PaddlePaddle/FluidDoc/blob/release/1.2/doc/fluid/dev/name_convention.md)。
### 定义GradOpMaker类
通常情况下,大部分Op只有一个对应的反向Op,每个Op的会有一个对应的`GradOpMaker`。为方便代码编写,fluid为只有提供了一个模板类[`SingleGradOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/grad_op_desc_maker.h#L188)。`MulOp`的`GradOpMaker`需要继承这个模板类,并在`Apply()`方法中设置反向Op的输入、输出和属性。此外,fluid还提供了一个默认的`GradOpMaker`,
[`DefaultGradOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/grad_op_desc_maker.h#L227),该模板类会使用前向Op的全部输入(`Input`)输出(`Output`)以及输出变量所对应的梯度(`Output@Grad`)作为反向Op的输入,将前向Op的输入变量所对应的的梯度(`Input@Grad`)作为输出。
**注意:**
不要将反向Op不会用到的变量放到反向Op的输入列表中,这样会导致这些不会被反向Op用到的变量的空间不能够及时回收,进而有可能导致用到该Op的模型可以设置的batch_size较低。
比如`relu`操作的前向操作为:`out.device(d) = x.cwiseMax(static_cast(0));`反向操作为:`dx.device(d) = dout * (out > static_cast(0)).template cast();`。显然,反向操作中只是用到了`out`、`dout`、`dx`,没有用到`x`。因此,通常不建议使用默认的`DefaultGradOpMaker`。
下面示例定义了`MulOp`的`GradOpMaker`。
```cpp
template
class MulOpGradMaker : public framework::SingleGradOpMaker {
public:
using framework::SingleGradOpMaker::SingleGradOpMaker;
protected:
void Apply(GradOpPtr retv) const override {
retv->SetType("mul_grad");
retv->SetInput("X", this->Input("X"));
retv->SetInput("Y", this->Input("Y"));
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
retv->SetAttrMap(this->Attrs());
}
};
```
**注意:**
- 有些Op的前向逻辑和反向逻辑是一样的,比如[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/scale_op.cc).这种情况下,前向Op和反向Op的Kernel可以为同一个。
- 有些前向Op所对应的反向Op可能有多个,比如[`SumOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/sum_op.cc),这种情况下,`GradMaker`需要继承`framework::GradOpDescMakerBase`。
- 有些Op的反向对应另一个Op的前向,比如[`SplitOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/split_op.h),这种情况下,[`SplitGradMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/split_op.h#L157)中定义的`SplitOp`反向Op的Type就是`concat`,
- 为高效地同时支持命令式编程模式(动态图)和声明式编程模式(静态图),`SingleGradOpMaker`是一个模板类,在注册Operator时需要同时注册`MulOpGradMaker`(声明式编程模式使用)和`MulOpGradMaker`(命令式编程模式使用)。
### 定义Operator类
下面实现了MulOp的定义:
```cpp
class MulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("Input(X) of MulOp should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasInput("Y"), true,
platform::errors::NotFound("Input(Y) of MulOp should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output(Out) of MulOp should not be null."));
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
int x_num_col_dims = ctx->Attrs().Get("x_num_col_dims");
int y_num_col_dims = ctx->Attrs().Get("y_num_col_dims");
VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
<< " x_num_col_dims=" << x_num_col_dims
<< " y_num_col_dims=" << y_num_col_dims;
PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
platform::errors::PreconditionNotMet(
"The Input variable Y(%s) has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function.",
ctx->Inputs("Y").front()));
PADDLE_ENFORCE_GT(
x_dims.size(), x_num_col_dims,
platform::errors::InvalidArgument(
"The input tensor X's dimensions of MulOp "
"should be larger than x_num_col_dims. But received X's "
"dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
x_dims.size(), x_dims, x_num_col_dims));
PADDLE_ENFORCE_GT(
y_dims.size(), y_num_col_dims,
platform::errors::InvalidArgument(
"The input tensor Y's dimensions of MulOp "
"should be larger than y_num_col_dims. But received Y's "
"dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
y_dims.size(), y_dims, y_num_col_dims));
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
PADDLE_ENFORCE_EQ(
x_mat_dims[1], y_mat_dims[0],
platform::errors::InvalidArgument(
"After flatten the input tensor X and Y to 2-D dimensions "
"matrix X1 and Y1, the matrix X1's width must be equal with matrix "
"Y1's height. But received X's shape = [%s], X1's shape = [%s], "
"X1's "
"width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
"%s.",
x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
y_mat_dims[0]));
std::vector output_dims;
output_dims.reserve(
static_cast(x_num_col_dims + y_dims.size() - y_num_col_dims));
for (int i = 0; i < x_num_col_dims; ++i) {
output_dims.push_back(x_dims[i]);
}
for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
output_dims.push_back(y_dims[i]);
}
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
ctx->ShareLoD("X", /*->*/ "Out");
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library = framework::LibraryType::kPlain;
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
int customized_type_value =
framework::OpKernelType::kDefaultCustomizedTypeValue;
auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
if (library == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library = framework::LibraryType::kMKLDNN;
layout = framework::DataLayout::kMKLDNN;
if (input_data_type == framework::DataTypeTrait::DataType() ||
input_data_type == framework::DataTypeTrait::DataType()) {
customized_type_value = kMULMKLDNNINT8;
}
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
library, customized_type_value);
}
};
```
[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/mul_op.cc#L30)继承自`OperatorWithKernel`。`public`成员:
```cpp
using framework::OperatorWithKernel::OperatorWithKernel;
```
这句表示使用基类`OperatorWithKernel`的构造函数,也可写成:
```cpp
MulOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
```
此外,Operator类通常需要重写`InferShape`接口,并在有必要时重写`GetExpectedKernelType`接口。`InferShape`为const函数,不能修改Op的成员变量,参数为`framework::InferShapeContext* ctx`,通过该参数可获取到输入输出以及属性。它的功能是:
- 做检查, 尽早报错:检查输入数据维度、类型等是否合法。
- 设置输出Tensor的形状以及LoD信息。
`GetExpectedKernelType`接口OperatorWithKernel类中用于获取指定设备(例如CPU,GPU)上指定数据类型(例如double,float)的OpKernel的方法。该方法的重写可见请参考[写C++ OP相关注意事项](op_notes.html#getexpectedkerneltype)。
通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和下面将要介绍的注册函数一起放在`.cc`中
### InferShape区分 compile time 和 run time
在我们的声明式编程模式网络中,`InferShape`操作在[编译时(compile time)和运行时(run time)](https://github.com/PaddlePaddle/FluidDoc/blob/release/1.2/doc/fluid/getstarted/Developer's_Guide_to_Paddle_Fluid.md#%E8%AE%A9%E6%88%91%E4%BB%AC%E5%9C%A8fluid%E7%A8%8B%E5%BA%8F%E5%AE%9E%E4%BE%8B%E4%B8%AD%E5%8C%BA%E5%88%86%E7%BC%96%E8%AF%91%E6%97%B6%E5%92%8C%E8%BF%90%E8%A1%8C%E6%97%B6)都会被调用,在compile time时,由于真实的维度未知,框架内部用-1来表示,在run time时,用实际的维度表示,因此维度的值在compile time和 run time时可能不一致,如果存在维度的判断和运算操作,InferShape就需要区分compile time 和 run time。
以下两种情况需要区分compile time和 run time。
**1.检查**
如以下代码:
```cpp
auto x_dim = ctx->GetInputDim("X");
int i = xxx;
PADDLE_ENFORCE_GT( x_dim[i] , 10)
```
在compile time的时候,x_dim[i]可能等于-1,导致这个PADDLE_ENFORCE_GT报错退出。
如果用了以下paddle中定义的宏进行判断:
```cpp
PADDLE_ENFORCE_EQ ( x_dim[i] , 10)
PADDLE_ENFORCE_NE ( x_dim[i] , 10)
PADDLE_ENFORCE_GT ( x_dim[i] , 10)
PADDLE_ENFORCE_GE ( x_dim[i] , 10)
PADDLE_ENFORCE_LT ( x_dim[i] , 10)
PADDLE_ENFORCE_LE ( x_dim[i] , 10)
```
都需要区分compile time和run time
**2. 运算**
如以下代码:
```cpp
auto x_dim = ctx->GetInputDim("X");
int i = xxx;
y_dim[0] = x_dim[i] + 10
```
在compile time的时候,x_dim[i]可能等于-1,得到的 y_dim[0] 等于 9,是不符合逻辑的
如果用到了类似以下的运算操作
```cpp
y_dim[i] = x_dim[i] + 10
y_dim[i] = x_dim[i] - 10
y_dim[i] = x_dim[i] * 10
y_dim[i] = x_dim[i] / 10
y_dim[i] = x_dim[i] + z_dim[i]
```
都需要区分compile time和run time
**处理的标准**:
- 检查: compile time的时候不判断维度等于-1的情况,但在runtime的时候检查
- 运算: -1和其他数做任何运算都要等于-1
**参考代码**
1. 判断的实现方法可以参考[cross_entropy_op](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/cross_entropy_op.cc#L39),cross_entropy_op 要求X和labels的两个输入,除了最后一维以外,其他的维度完全一致
```cpp
bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
framework::contain_unknown_dim(label_dims);
bool check = ctx->IsRuntime() || !contain_unknown_dim;
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
}
```
2. 运算的实现可以参考[concat_op](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/concat_op.cc#L59),concat在InferShape判断时,调用`ComputeAndCheckShape`,除了进行concat轴之外,其他的维度完全一致;在生成output的维度时,把concat轴的维度求和,其他的维度和输入保持一致。
```cpp
const size_t n = inputs_dims.size();
auto out_dims = inputs_dims[0];
size_t in_zero_dims_size = out_dims.size();
for (size_t i = 1; i < n; i++) {
for (size_t j = 0; j < in_zero_dims_size; j++) {
if (j == axis) {
if (is_runtime) {
out_dims[axis] += inputs_dims[i][j];
} else {
if (inputs_dims[i][j] == -1) {
out_dims[axis] = -1;
} else {
out_dims[axis] += inputs_dims[i][j];
}
}
} else {
bool check_shape =
is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0);
if (check_shape) {
// check all shape in run time
PADDLE_ENFORCE_EQ(
inputs_dims[0][j], inputs_dims[i][j],
"ShapeError: Dimension %d in inputs' shapes must be equal. "
"But recevied input[0]'s shape = "
"[%s], input[%d]'s shape = [%s].",
j, inputs_dims[0], i, inputs_dims[i]);
}
}
}
}
```
### 定义OpKernel类
`MulKernel`继承自`framework::OpKernel`,带有下面两个模板参数:
- `typename DeviceContext`: 表示设备类型。不同设备(CPU、CUDA)共享同一个Kernel时,需加该模板参数;不共享则不加,一个不共享的例子是[`SGDOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/optimizers/sgd_op.h)。
- `typename T` : 表示数据类型,如`float`, `double`, `int16`等。
需要为`MulKernel`类重写`Compute`接口。
- `Compute`接受一个输入参数:`const framework::ExecutionContext& context`。
- 与`InferShapeContext`相比,`ExecutionContext`增加了设备类型,同样可获取到输入输出和属性参数。
- `Compute`函数里实现`OpKernel`的具体计算逻辑。
Op的输入和输出可分别通过`ExecutionContext::Input()`和`ExecutionContext::Output()`获得。
**注意:** 若op的输入/输出的变量类型是`LoDTensor`(fluid默认所有的`Tensor`默认都是`LoDTensor`类型),请写成`ExecutionContext::Input()`和`ExecutionContext::Output()`,不要写`ExecutionContext::Input()`和`ExecutionContext::Output()`。因为若实际的变量类型为`SelectedRows`,`Input()`和`Output()`方法会将`SelectedRows`类型特化为`Tensor`,导致潜在的错误。
下面是 `MulKernel` `Compute`的实现:
```cpp
template
class MulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* x = context.Input("X");
const Tensor* y = context.Input("Y");
Tensor* z = context.Output("Out");
const Tensor x_matrix =
x->dims().size() > 2
? framework::ReshapeToMatrix(
*x, context.template Attr("x_num_col_dims"))
: *x;
const Tensor y_matrix =
y->dims().size() > 2
? framework::ReshapeToMatrix(
*y, context.template Attr("y_num_col_dims"))
: *y;
z->mutable_data(context.GetPlace());
auto z_dim = z->dims();
if (z_dim.size() != 2) {
z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
}
auto blas = math::GetBlas(context);
blas.MatMul(x_matrix, y_matrix, z);
if (z_dim.size() != 2) {
z->Resize(z_dim);
}
}
};
```
需要注意:**不同设备(CPU、CUDA)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。**
`MulOp`的CPU、CUDA实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`SGDOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/optimizers/sgd_op.h)。
为了使`OpKernel`的计算过程书写更加简单,并且CPU、CUDA的代码可以复用,我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库,请参考[使用文档](https://github.com/PaddlePaddle/FluidDoc/blob/release/1.2/doc/fluid/dev/use_eigen_cn.md)。
到此,前向Op实现完成。接下来,需要在`.cc`文件中注册该op和kernel。
反向Op类的定义,反向OpKernel的定义与前向Op类似,这里不再赘述。
### 注册Operator
- 在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。
```cpp
namespace ops = paddle::operators;
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
ops::MulOpGradMaker,
ops::MulOpGradMaker);
REGISTER_OPERATOR(mul_grad, ops::MulGradOp);
REGISTER_OP_CPU_KERNEL(mul,
ops::MulKernel,
ops::MulKernel);
REGISTER_OP_CPU_KERNEL(mul_grad,
ops::MulGradKernel,
ops::MulGradKernel);
```
在上面的代码中,使用`REGISTER_OPERATOR`注册了`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,其`GradOpMaker`分别是`ops::MulOpGradMaker`(声明式编程模式使用)和`ops::MulOpGradMaker`(命令式编程模式使用),并使用`REGISTER_OPERATOR`注册`ops::MulGradOp`,类型名为`mul_grad`。然后,使用`REGISTER_OP_CPU_KERNEL`注册了`ops::MulKernel`类,并特化模板参数为设备为`paddle::platform::CPUPlace`、数据类型为`float`类型和`double`类型;同理,注册`ops::MulGradKernel`类。
- 在 `.cu`文件中注册CUDA Kernel。
- 请注意,如果CUDA Kernel的实现基于Eigen unsupported模块,那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下:
```cpp
// if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(mul,
ops::MulKernel,
ops::MulKernel);
REGISTER_OP_CUDA_KERNEL(mul_grad,
ops::MulGradKernel,
ops::MulGradKernel);
```
**注意:**
在运行Op时,框架系统会根据输入数据所在的设备、输入数据的类型等信息自动的选择合适的OpKernel,比如输入的数据是在GPU上,并且为`float`类型,框架系统会选择由`REGISTER_OP_CUDA_KERNEL`注册的`ops::MulKernel`。如果用户希望指定运行时可被调用的OpKernel,用户需要覆盖`framework::OperatorWithKernel`中的`GetExpectedKernelType`函数,比如`MulOp`会根据属性`use_mkldnn`为`false`还是为`true`决定是否调用mkldnn库来完成计算。
### 编译
在`build/paddle/fluid/operators`目录下,运行下面命令可以进行编译:
```
make mul_op
```
## 绑定Python
系统会对新增的op自动绑定Python,并链接到生成的lib库中。
### 使用mul操作在Python端构建Layer
在Python端,`mul`操作用于构建FC层,即:
$$Out = Act({X*W + b})$$
具体实现方式可参考[FC层的实现代码](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/layers/nn.py#L205)。
## 实现单元测试
单测包括对比前向Op不同设备(CPU、CUDA)的实现、对比反向OP不同设备(CPU、CUDA)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/unittests/test_mul_op.py)。
**注意:**
单测中的测试用例需要尽可能的覆盖Op中的所有分支。
### 前向Operator单测
Op单元测试继承自`OpTest`。各项具体的单元测试在`TestMulOp`里完成。测试Operator,需要:
1. 在`setUp`函数定义输入、输出,以及相关的属性参数。
> 注意:输入输出请以`ndarray`的类型配置输入/输出,如果需要配置一个带`LOD`的输入/输出,请以`tuple`的形式传入,`tuple`中应该有两个类型为`ndarray`的元素,第一个是实际的数据,第二个是`LOD`
2. 生成随机的输入数据。
3. 在Python脚本中实现与前向operator相同的计算逻辑,得到输出值,与operator前向计算的输出进行对比。
4. 反向计算已经自动集成进测试框架,直接调用相应接口即可。
```python
import unittest
import numpy as np
from op_test import OpTest
class TestMulOp(OpTest):
def setUp(self):
self.op_type = "mul"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
```
上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释:
- `self.op_type = "mul" ` : 定义类型,与operator注册时注册的类型一致。
- `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。
- `self.outputs` : 定义输出,并在Python脚本中完成与operator同样的计算逻辑,返回Python端的计算结果。
### 反向operator单测
而反向测试中:
- `test_check_grad_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。
- 第一个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。
- 第二个参数`"Out"` : 指定前向网络最终的输出目标变量`Out`。
- 第三个参数`max_relative_error`:指定检测梯度时能容忍的最大错误值。
- `test_check_grad_ingore_x`和`test_check_grad_ingore_y`分支用来测试只需要计算一个输入梯度的情况。
### 编译和执行
`python/paddle/fluid/tests/unittests/` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。
请注意,**运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake -DWITH_TESTING=ON ..`。编译成功后,执行下面的命令来运行单元测试:
```bash
make test ARGS="-R test_mul_op -V"
```
或者:
```bash
ctest -R test_mul_op
```
## 注意事项
- 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OPERATOR(B, ...)`等,这将会导致单元测试出错。
- 如果Op没有实现CUDA Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。
- 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。
### PADDLE_ENFORCE使用注意
实现Op时检查数据的合法性需要使用PADDLE_ENFORCE以及PADDLE_ENFORCE_EQ等宏定义,基本格式如下:
```
PADDLE_ENFORCE(表达式, 错误提示信息)
PADDLE_ENFORCE_EQ(比较对象A, 比较对象B, 错误提示信息)
```
如果表达式为真,或者比较对象A=B,则检查通过,否则会终止程序运行,向用户反馈相应的错误提示信息。
为了确保提示友好易懂,开发者需要注意其使用方法。
#### 总体原则
任何使用了PADDLE_ENFORCE与PADDLE_ENFORCE_XX检查的地方,必须有详略得当的备注解释!**错误提示信息不能为空!**
#### 提示信息书写标准
1. [required] 哪里错了?为什么错了?
- 例如:`ValueError: Mismatched label shape`
2. [optional] 期望的输入是什么样的?实际的输入是怎样的?
- 例如:`Expected labels dimension=1. Received 4.`
3. [optional] 能否给出修改意见?
- 例如:`Suggested Fix:If your classifier expects one-hot encoding label,check your n_classes argument to the estimatorand/or the shape of your label.Otherwise, check the shape of your label.`
如果并非必要或者简洁的描述即可表达清楚以上要点,根据情况书写亦可。
#### FAQ 典型问题
1. 无报错信息或报错信息过于简单,不能给用户提供有效的提示!
问题示例1 :未写提示信息
```
PADDLE_ENFORCE(ctx->HasInput("X"), "");
```
问题示例2 :提示信息过于简单
```
PADDLE_ENFORCE(i != nullptr, "i must be set"); // i是什么?
```
2. 在报错信息中使用开发人员定义的变量缩写,不易理解!
问题示例:
```
PADDLE_ENFORCE(forward_pd != nullptr,
"Fail to find eltwise_fwd_pd in device context"); //eltwise_fwd_pd用户可能看不懂
```
3. OP内部调用非法接口:Op内部如果出现Output = ShareDataWith(Input)
问题示例:
```cpp
auto *out = ctx.Output("Out");
auto *in = ctx.Input("X");
out->ShareDataWith(*in);
```
Op内部如果出现Output = ShareDataWith(Input),相当于operator图的中有一条隐藏边,连接了Input和Output,这条边无法在图分析中表达,引发基于图优化的错误。
4. OP实现的性能实践
调用了eigen的broadcast, chop等操作,性能会比手写cuda kernel差几倍以上。此时cpu的实现可以复用eigen,gpu实现可以实现cuda kernel.
#### OP InferShape检查提示信息特别说明
- 检查输入输出变量,请统一遵循以下格式
`Input(变量名) of OP名 operator should not be null.`
正确示例:
```
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of LSTMP operator should not be null.");
```
- 反向Op的输入输出检查,要写明反向Op的名字
正确示例:
```
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of LoDResetGrad opreator should not be null.");
```