# 如何写新的C++ OP ## 概念简介 简单介绍需要用到基类,详细介绍请参考[设计文档](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/motivation/refactorization.md#operatoropwithkernelopkernel)。 - `framework::OperatorBase`: Operator(简写,Op)基类。 - `framework::OpKernel`: Op计算函数的基类,称作Kernel。 - `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。 - `framework::OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成。 根据是否包含Kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op: - 包含Kernel的Op继承自`OperatorWithKernel`,这类Op的功能实现与输入的数据类型、数据布局、数据所在的设备以及Op实现所调用第三方库等有关。比如ConvOp,如果使用CPU计算,一般通过调用mkl库中的矩阵乘操作实现,如果使用GPU计算,一般通过调用cublas库中的矩阵乘操作实现,或者直接调用cudnn库中的卷积操作。 - 不包含Kernel的Op继承自`OperatorBase`,因为这类Op的功能实现与设备以及输入的数据不相关。比如WhileOp、IfElseOp等。 本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
内容 定义位置
OpProtoMake定义 .cc 文件
Op定义 .cc 文件
Kernel实现 CPU、CUDA共享Kernel实现在.h 文件中,否则,CPU 实现在.cc 文件中,CUDA 实现在.cu 文件中。
注册Op Op注册实现在.cc 文件;Kernel注册CPU实现在.cc 文件中,CUDA实现在.cu 文件中
实现新的op都添加至目录[paddle/fluid/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/operators)下,文件命名以`*_op.h`(如有)、`*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。** 下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。 ## 实现C++类 ### 定义ProtoMaker类 矩阵乘法的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。 首先定义`ProtoMaker`来描述该Op的输入、输出,并添加注释: ```cpp class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The first input tensor of mul op."); AddInput("Y", "(Tensor), The second input tensor of mul op."); AddOutput("Out", "(Tensor), The output tensor of mul op."); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); AddAttr( "x_num_col_dims", R"DOC((int, default 1), The mul_op can take tensors with more than two dimensions as its inputs. If the input $X$ is a tensor with more than two dimensions, $X$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(X) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $X$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $X$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $X$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. )DOC") .SetDefault(1) .EqualGreaterThan(1); AddAttr( "y_num_col_dims", R"DOC((int, default 1), The mul_op can take tensors with more than two, dimensions as its inputs. If the input $Y$ is a tensor with more than two dimensions, $Y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $Y$ is flattened. See comments of `x_num_col_dims` for more details. )DOC") .SetDefault(1) .EqualGreaterThan(1); AddAttr( "scale_x", "scale_x to be used for int8 mul input data x. scale_x has the" "same purpose as scale_in in OPs that support quantization." "Only to be used with MKL-DNN INT8") .SetDefault(1.0f); AddAttr>( "scale_y", "scale_y to be used for int8 mul input data y. scale_y has the" "same purpose as scale_weights in OPs that support quantization." "Only to be used with MKL-DNN INT8") .SetDefault({1.0f}); AddAttr("scale_out", "scale_out to be used for int8 output data." "Only used with MKL-DNN INT8") .SetDefault(1.0f); AddAttr( "force_fp32_output", "(bool, default false) Force quantize kernel output FP32, only " "used in quantized MKL-DNN.") .SetDefault(false); AddComment(R"DOC( Mul Operator. This operator is used to perform matrix multiplication for input $X$ and $Y$. The equation is: $$Out = X * Y$$ Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $X$. )DOC"); } }; ``` [`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/mul_op.cc)继承自`framework::OpProtoAndCheckerMaker`。 开发者通过覆盖`framework::OpProtoAndCheckerMaker`中的`Make`函数来定义Op所对应的Proto,通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddAttr`添加属性参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。 上面的代码在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,以及`use_mkldnn`等属性,并解释了各自含义,命名请遵守[命名规范](https://github.com/PaddlePaddle/FluidDoc/blob/release/1.2/doc/fluid/dev/name_convention.md)。 ### 定义GradOpMaker类 通常情况下,大部分Op只有一个对应的反向Op,每个Op的会有一个对应的`GradOpMaker`。为方便代码编写,fluid为只有提供了一个模板类[`SingleGradOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/grad_op_desc_maker.h#L188)。`MulOp`的`GradOpMaker`需要继承这个模板类,并在`Apply()`方法中设置反向Op的输入、输出和属性。此外,fluid还提供了一个默认的`GradOpMaker`, [`DefaultGradOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/grad_op_desc_maker.h#L227),该模板类会使用前向Op的全部输入(`Input`)输出(`Output`)以及输出变量所对应的梯度(`Output@Grad`)作为反向Op的输入,将前向Op的输入变量所对应的的梯度(`Input@Grad`)作为输出。 **注意:** 不要将反向Op不会用到的变量放到反向Op的输入列表中,这样会导致这些不会被反向Op用到的变量的空间不能够及时回收,进而有可能导致用到该Op的模型可以设置的batch_size较低。 比如`relu`操作的前向操作为:`out.device(d) = x.cwiseMax(static_cast(0));`反向操作为:`dx.device(d) = dout * (out > static_cast(0)).template cast();`。显然,反向操作中只是用到了`out`、`dout`、`dx`,没有用到`x`。因此,通常不建议使用默认的`DefaultGradOpMaker`。 下面示例定义了`MulOp`的`GradOpMaker`。 ```cpp template class MulOpGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr retv) const override { retv->SetType("mul_grad"); retv->SetInput("X", this->Input("X")); retv->SetInput("Y", this->Input("Y")); retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); retv->SetAttrMap(this->Attrs()); } }; ``` **注意:** - 有些Op的前向逻辑和反向逻辑是一样的,比如[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/scale_op.cc).这种情况下,前向Op和反向Op的Kernel可以为同一个。 - 有些前向Op所对应的反向Op可能有多个,比如[`SumOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/sum_op.cc),这种情况下,`GradMaker`需要继承`framework::GradOpDescMakerBase`。 - 有些Op的反向对应另一个Op的前向,比如[`SplitOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/split_op.h),这种情况下,[`SplitGradMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/split_op.h#L157)中定义的`SplitOp`反向Op的Type就是`concat`, - 为高效地同时支持命令式编程模式(动态图)和声明式编程模式(静态图),`SingleGradOpMaker`是一个模板类,在注册Operator时需要同时注册`MulOpGradMaker`(声明式编程模式使用)和`MulOpGradMaker`(命令式编程模式使用)。 ### 定义Operator类 下面实现了MulOp的定义: ```cpp class MulOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ( ctx->HasInput("X"), true, platform::errors::NotFound("Input(X) of MulOp should not be null.")); PADDLE_ENFORCE_EQ( ctx->HasInput("Y"), true, platform::errors::NotFound("Input(Y) of MulOp should not be null.")); PADDLE_ENFORCE_EQ( ctx->HasOutput("Out"), true, platform::errors::NotFound("Output(Out) of MulOp should not be null.")); auto x_dims = ctx->GetInputDim("X"); auto y_dims = ctx->GetInputDim("Y"); int x_num_col_dims = ctx->Attrs().Get("x_num_col_dims"); int y_num_col_dims = ctx->Attrs().Get("y_num_col_dims"); VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims << " x_num_col_dims=" << x_num_col_dims << " y_num_col_dims=" << y_num_col_dims; PADDLE_ENFORCE_NE(framework::product(y_dims), 0, platform::errors::PreconditionNotMet( "The Input variable Y(%s) has not " "been initialized. You may need to confirm " "if you put exe.run(startup_program) " "after optimizer.minimize function.", ctx->Inputs("Y").front())); PADDLE_ENFORCE_GT( x_dims.size(), x_num_col_dims, platform::errors::InvalidArgument( "The input tensor X's dimensions of MulOp " "should be larger than x_num_col_dims. But received X's " "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.", x_dims.size(), x_dims, x_num_col_dims)); PADDLE_ENFORCE_GT( y_dims.size(), y_num_col_dims, platform::errors::InvalidArgument( "The input tensor Y's dimensions of MulOp " "should be larger than y_num_col_dims. But received Y's " "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.", y_dims.size(), y_dims, y_num_col_dims)); auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims); auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims); PADDLE_ENFORCE_EQ( x_mat_dims[1], y_mat_dims[0], platform::errors::InvalidArgument( "After flatten the input tensor X and Y to 2-D dimensions " "matrix X1 and Y1, the matrix X1's width must be equal with matrix " "Y1's height. But received X's shape = [%s], X1's shape = [%s], " "X1's " "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = " "%s.", x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, y_mat_dims[0])); std::vector output_dims; output_dims.reserve( static_cast(x_num_col_dims + y_dims.size() - y_num_col_dims)); for (int i = 0; i < x_num_col_dims; ++i) { output_dims.push_back(x_dims[i]); } for (int i = y_num_col_dims; i < y_dims.size(); ++i) { output_dims.push_back(y_dims[i]); } ctx->SetOutputDim("Out", framework::make_ddim(output_dims)); ctx->ShareLoD("X", /*->*/ "Out"); } framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const { framework::LibraryType library = framework::LibraryType::kPlain; framework::DataLayout layout = framework::DataLayout::kAnyLayout; int customized_type_value = framework::OpKernelType::kDefaultCustomizedTypeValue; auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); #ifdef PADDLE_WITH_MKLDNN if (library == framework::LibraryType::kPlain && platform::CanMKLDNNBeUsed(ctx)) { library = framework::LibraryType::kMKLDNN; layout = framework::DataLayout::kMKLDNN; if (input_data_type == framework::DataTypeTrait::DataType() || input_data_type == framework::DataTypeTrait::DataType()) { customized_type_value = kMULMKLDNNINT8; } } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout, library, customized_type_value); } }; ``` [`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/mul_op.cc#L30)继承自`OperatorWithKernel`。`public`成员: ```cpp using framework::OperatorWithKernel::OperatorWithKernel; ``` 这句表示使用基类`OperatorWithKernel`的构造函数,也可写成: ```cpp MulOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} ``` 此外,Operator类通常需要重写`InferShape`接口,并在有必要时重写`GetExpectedKernelType`接口。`InferShape`为const函数,不能修改Op的成员变量,参数为`framework::InferShapeContext* ctx`,通过该参数可获取到输入输出以及属性。它的功能是: - 做检查, 尽早报错:检查输入数据维度、类型等是否合法。 - 设置输出Tensor的形状以及LoD信息。 `GetExpectedKernelType`接口OperatorWithKernel类中用于获取指定设备(例如CPU,GPU)上指定数据类型(例如double,float)的OpKernel的方法。该方法的重写可见请参考[写C++ OP相关注意事项](op_notes.html#getexpectedkerneltype)。 通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和下面将要介绍的注册函数一起放在`.cc`中 ### InferShape区分 compile time 和 run time 在我们的声明式编程模式网络中,`InferShape`操作在[编译时(compile time)和运行时(run time)](https://github.com/PaddlePaddle/FluidDoc/blob/release/1.2/doc/fluid/getstarted/Developer's_Guide_to_Paddle_Fluid.md#%E8%AE%A9%E6%88%91%E4%BB%AC%E5%9C%A8fluid%E7%A8%8B%E5%BA%8F%E5%AE%9E%E4%BE%8B%E4%B8%AD%E5%8C%BA%E5%88%86%E7%BC%96%E8%AF%91%E6%97%B6%E5%92%8C%E8%BF%90%E8%A1%8C%E6%97%B6)都会被调用,在compile time时,由于真实的维度未知,框架内部用-1来表示,在run time时,用实际的维度表示,因此维度的值在compile time和 run time时可能不一致,如果存在维度的判断和运算操作,InferShape就需要区分compile time 和 run time。 以下两种情况需要区分compile time和 run time。 **1.检查** 如以下代码: ```cpp auto x_dim = ctx->GetInputDim("X"); int i = xxx; PADDLE_ENFORCE_GT( x_dim[i] , 10) ``` 在compile time的时候,x_dim[i]可能等于-1,导致这个PADDLE_ENFORCE_GT报错退出。 如果用了以下paddle中定义的宏进行判断: ```cpp PADDLE_ENFORCE_EQ ( x_dim[i] , 10) PADDLE_ENFORCE_NE ( x_dim[i] , 10) PADDLE_ENFORCE_GT ( x_dim[i] , 10) PADDLE_ENFORCE_GE ( x_dim[i] , 10) PADDLE_ENFORCE_LT ( x_dim[i] , 10) PADDLE_ENFORCE_LE ( x_dim[i] , 10) ``` 都需要区分compile time和run time **2. 运算** 如以下代码: ```cpp auto x_dim = ctx->GetInputDim("X"); int i = xxx; y_dim[0] = x_dim[i] + 10 ``` 在compile time的时候,x_dim[i]可能等于-1,得到的 y_dim[0] 等于 9,是不符合逻辑的 如果用到了类似以下的运算操作 ```cpp y_dim[i] = x_dim[i] + 10 y_dim[i] = x_dim[i] - 10 y_dim[i] = x_dim[i] * 10 y_dim[i] = x_dim[i] / 10 y_dim[i] = x_dim[i] + z_dim[i] ``` 都需要区分compile time和run time **处理的标准**: - 检查: compile time的时候不判断维度等于-1的情况,但在runtime的时候检查 - 运算: -1和其他数做任何运算都要等于-1 **参考代码** 1. 判断的实现方法可以参考[cross_entropy_op](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/cross_entropy_op.cc#L39),cross_entropy_op 要求X和labels的两个输入,除了最后一维以外,其他的维度完全一致 ```cpp bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) || framework::contain_unknown_dim(label_dims); bool check = ctx->IsRuntime() || !contain_unknown_dim; if (check) { PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1), framework::slice_ddim(label_dims, 0, rank - 1), "Input(X) and Input(Label) shall have the same shape " "except the last dimension."); } ``` 2. 运算的实现可以参考[concat_op](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/concat_op.cc#L59),concat在InferShape判断时,调用`ComputeAndCheckShape`,除了进行concat轴之外,其他的维度完全一致;在生成output的维度时,把concat轴的维度求和,其他的维度和输入保持一致。 ```cpp const size_t n = inputs_dims.size(); auto out_dims = inputs_dims[0]; size_t in_zero_dims_size = out_dims.size(); for (size_t i = 1; i < n; i++) { for (size_t j = 0; j < in_zero_dims_size; j++) { if (j == axis) { if (is_runtime) { out_dims[axis] += inputs_dims[i][j]; } else { if (inputs_dims[i][j] == -1) { out_dims[axis] = -1; } else { out_dims[axis] += inputs_dims[i][j]; } } } else { bool check_shape = is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0); if (check_shape) { // check all shape in run time PADDLE_ENFORCE_EQ( inputs_dims[0][j], inputs_dims[i][j], "ShapeError: Dimension %d in inputs' shapes must be equal. " "But recevied input[0]'s shape = " "[%s], input[%d]'s shape = [%s].", j, inputs_dims[0], i, inputs_dims[i]); } } } } ``` ### 定义OpKernel类 `MulKernel`继承自`framework::OpKernel`,带有下面两个模板参数: - `typename DeviceContext`: 表示设备类型。不同设备(CPU、CUDA)共享同一个Kernel时,需加该模板参数;不共享则不加,一个不共享的例子是[`SGDOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/optimizers/sgd_op.h)。 - `typename T` : 表示数据类型,如`float`, `double`, `int16`等。 需要为`MulKernel`类重写`Compute`接口。 - `Compute`接受一个输入参数:`const framework::ExecutionContext& context`。 - 与`InferShapeContext`相比,`ExecutionContext`增加了设备类型,同样可获取到输入输出和属性参数。 - `Compute`函数里实现`OpKernel`的具体计算逻辑。 Op的输入和输出可分别通过`ExecutionContext::Input()`和`ExecutionContext::Output()`获得。 **注意:** 若op的输入/输出的变量类型是`LoDTensor`(fluid默认所有的`Tensor`默认都是`LoDTensor`类型),请写成`ExecutionContext::Input()`和`ExecutionContext::Output()`,不要写`ExecutionContext::Input()`和`ExecutionContext::Output()`。因为若实际的变量类型为`SelectedRows`,`Input()`和`Output()`方法会将`SelectedRows`类型特化为`Tensor`,导致潜在的错误。 下面是 `MulKernel` `Compute`的实现: ```cpp template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* x = context.Input("X"); const Tensor* y = context.Input("Y"); Tensor* z = context.Output("Out"); const Tensor x_matrix = x->dims().size() > 2 ? framework::ReshapeToMatrix( *x, context.template Attr("x_num_col_dims")) : *x; const Tensor y_matrix = y->dims().size() > 2 ? framework::ReshapeToMatrix( *y, context.template Attr("y_num_col_dims")) : *y; z->mutable_data(context.GetPlace()); auto z_dim = z->dims(); if (z_dim.size() != 2) { z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]}); } auto blas = math::GetBlas(context); blas.MatMul(x_matrix, y_matrix, z); if (z_dim.size() != 2) { z->Resize(z_dim); } } }; ``` 需要注意:**不同设备(CPU、CUDA)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。** `MulOp`的CPU、CUDA实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`SGDOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/operators/optimizers/sgd_op.h)。 为了使`OpKernel`的计算过程书写更加简单,并且CPU、CUDA的代码可以复用,我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库,请参考[使用文档](https://github.com/PaddlePaddle/FluidDoc/blob/release/1.2/doc/fluid/dev/use_eigen_cn.md)。 到此,前向Op实现完成。接下来,需要在`.cc`文件中注册该op和kernel。 反向Op类的定义,反向OpKernel的定义与前向Op类似,这里不再赘述。 ### 注册Operator - 在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。 ```cpp namespace ops = paddle::operators; REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType, ops::MulOpGradMaker, ops::MulOpGradMaker); REGISTER_OPERATOR(mul_grad, ops::MulGradOp); REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, ops::MulGradKernel, ops::MulGradKernel); ``` 在上面的代码中,使用`REGISTER_OPERATOR`注册了`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,其`GradOpMaker`分别是`ops::MulOpGradMaker`(声明式编程模式使用)和`ops::MulOpGradMaker`(命令式编程模式使用),并使用`REGISTER_OPERATOR`注册`ops::MulGradOp`,类型名为`mul_grad`。然后,使用`REGISTER_OP_CPU_KERNEL`注册了`ops::MulKernel`类,并特化模板参数为设备为`paddle::platform::CPUPlace`、数据类型为`float`类型和`double`类型;同理,注册`ops::MulGradKernel`类。 - 在 `.cu`文件中注册CUDA Kernel。 - 请注意,如果CUDA Kernel的实现基于Eigen unsupported模块,那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下: ```cpp // if use Eigen unsupported module before include head files #define EIGEN_USE_GPU namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel, ops::MulKernel); REGISTER_OP_CUDA_KERNEL(mul_grad, ops::MulGradKernel, ops::MulGradKernel); ``` **注意:** 在运行Op时,框架系统会根据输入数据所在的设备、输入数据的类型等信息自动的选择合适的OpKernel,比如输入的数据是在GPU上,并且为`float`类型,框架系统会选择由`REGISTER_OP_CUDA_KERNEL`注册的`ops::MulKernel`。如果用户希望指定运行时可被调用的OpKernel,用户需要覆盖`framework::OperatorWithKernel`中的`GetExpectedKernelType`函数,比如`MulOp`会根据属性`use_mkldnn`为`false`还是为`true`决定是否调用mkldnn库来完成计算。 ### 编译 在`build/paddle/fluid/operators`目录下,运行下面命令可以进行编译: ``` make mul_op ``` ## 绑定Python 系统会对新增的op自动绑定Python,并链接到生成的lib库中。 ### 使用mul操作在Python端构建Layer 在Python端,`mul`操作用于构建FC层,即: $$Out = Act({X*W + b})$$ 具体实现方式可参考[FC层的实现代码](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/layers/nn.py#L205)。 ## 实现单元测试 单测包括对比前向Op不同设备(CPU、CUDA)的实现、对比反向OP不同设备(CPU、CUDA)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/unittests/test_mul_op.py)。 **注意:** 单测中的测试用例需要尽可能的覆盖Op中的所有分支。 ### 前向Operator单测 Op单元测试继承自`OpTest`。各项具体的单元测试在`TestMulOp`里完成。测试Operator,需要: 1. 在`setUp`函数定义输入、输出,以及相关的属性参数。 > 注意:输入输出请以`ndarray`的类型配置输入/输出,如果需要配置一个带`LOD`的输入/输出,请以`tuple`的形式传入,`tuple`中应该有两个类型为`ndarray`的元素,第一个是实际的数据,第二个是`LOD` 2. 生成随机的输入数据。 3. 在Python脚本中实现与前向operator相同的计算逻辑,得到输出值,与operator前向计算的输出进行对比。 4. 反向计算已经自动集成进测试框架,直接调用相应接口即可。 ```python import unittest import numpy as np from op_test import OpTest class TestMulOp(OpTest): def setUp(self): self.op_type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) ``` 上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释: - `self.op_type = "mul" ` : 定义类型,与operator注册时注册的类型一致。 - `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。 - `self.outputs` : 定义输出,并在Python脚本中完成与operator同样的计算逻辑,返回Python端的计算结果。 ### 反向operator单测 而反向测试中: - `test_check_grad_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。 - 第一个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。 - 第二个参数`"Out"` : 指定前向网络最终的输出目标变量`Out`。 - 第三个参数`max_relative_error`:指定检测梯度时能容忍的最大错误值。 - `test_check_grad_ingore_x`和`test_check_grad_ingore_y`分支用来测试只需要计算一个输入梯度的情况。 ### 编译和执行 `python/paddle/fluid/tests/unittests/` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。 请注意,**运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake -DWITH_TESTING=ON ..`。编译成功后,执行下面的命令来运行单元测试: ```bash make test ARGS="-R test_mul_op -V" ``` 或者: ```bash ctest -R test_mul_op ``` ## 注意事项 - 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OPERATOR(B, ...)`等,这将会导致单元测试出错。 - 如果Op没有实现CUDA Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。 - 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。 ### PADDLE_ENFORCE使用注意 实现Op时检查数据的合法性需要使用PADDLE_ENFORCE以及PADDLE_ENFORCE_EQ等宏定义,基本格式如下: ``` PADDLE_ENFORCE(表达式, 错误提示信息) PADDLE_ENFORCE_EQ(比较对象A, 比较对象B, 错误提示信息) ``` 如果表达式为真,或者比较对象A=B,则检查通过,否则会终止程序运行,向用户反馈相应的错误提示信息。 为了确保提示友好易懂,开发者需要注意其使用方法。 #### 总体原则 任何使用了PADDLE_ENFORCE与PADDLE_ENFORCE_XX检查的地方,必须有详略得当的备注解释!**错误提示信息不能为空!** #### 提示信息书写标准 1. [required] 哪里错了?为什么错了? - 例如:`ValueError: Mismatched label shape` 2. [optional] 期望的输入是什么样的?实际的输入是怎样的? - 例如:`Expected labels dimension=1. Received 4.` 3. [optional] 能否给出修改意见? - 例如:`Suggested Fix:If your classifier expects one-hot encoding label,check your n_classes argument to the estimatorand/or the shape of your label.Otherwise, check the shape of your label.` 如果并非必要或者简洁的描述即可表达清楚以上要点,根据情况书写亦可。 #### FAQ 典型问题 1. 无报错信息或报错信息过于简单,不能给用户提供有效的提示! 问题示例1 :未写提示信息 ``` PADDLE_ENFORCE(ctx->HasInput("X"), ""); ``` 问题示例2 :提示信息过于简单 ``` PADDLE_ENFORCE(i != nullptr, "i must be set"); // i是什么? ``` 2. 在报错信息中使用开发人员定义的变量缩写,不易理解! 问题示例: ``` PADDLE_ENFORCE(forward_pd != nullptr, "Fail to find eltwise_fwd_pd in device context"); //eltwise_fwd_pd用户可能看不懂 ``` 3. OP内部调用非法接口:Op内部如果出现Output = ShareDataWith(Input) 问题示例: ```cpp auto *out = ctx.Output("Out"); auto *in = ctx.Input("X"); out->ShareDataWith(*in); ``` Op内部如果出现Output = ShareDataWith(Input),相当于operator图的中有一条隐藏边,连接了Input和Output,这条边无法在图分析中表达,引发基于图优化的错误。 4. OP实现的性能实践 调用了eigen的broadcast, chop等操作,性能会比手写cuda kernel差几倍以上。此时cpu的实现可以复用eigen,gpu实现可以实现cuda kernel. #### OP InferShape检查提示信息特别说明 - 检查输入输出变量,请统一遵循以下格式 `Input(变量名) of OP名 operator should not be null.` 正确示例: ``` PADDLE_ENFORCE(ctx->HasInput("Input"), "Input(Input) of LSTMP operator should not be null."); ``` - 反向Op的输入输出检查,要写明反向Op的名字 正确示例: ``` PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LoDResetGrad opreator should not be null."); ```