.. _cn_api_nn_AdaptiveMaxPool3d: AdaptiveMaxPool3d ------------------------------- .. py:function:: paddle.nn.AdaptiveMaxPool3d(output_size, return_indices=False, name=None) 该算子根据输入 `x` , `output_size` 等参数对一个输入Tensor计算3D的自适应平均池化。输入和输出都是5-D Tensor, 默认是以 `NCDHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数, `D` , `H` , `W` 分别是输入特征的深度,高度,宽度. 计算公式如下: .. math:: dstart &= floor(i * D_{in} / D_{out}) dend &= ceil((i + 1) * D_{in} / D_{out}) hstart &= floor(j * H_{in} / H_{out}) hend &= ceil((j + 1) * H_{in} / H_{out}) wstart &= floor(k * W_{in} / W_{out}) wend &= ceil((k + 1) * W_{in} / W_{out}) Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend]) 参数 ::::::::: - **output_size** (int|list|tuple): 算子输出特征图的高宽长大小,其数据类型为int,list或tuple。 - **return_indices** (bool): 如果设置为True,则会与输出一起返回最大值的索引,默认为False。 - **name** (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 :ref:`api_guide_Name`。 形状 ::::::::: - **x** (Tensor): 默认形状为(批大小,通道数,输出特征长度),即NCDHW格式的5-D Tensor。 其数据类型为float32或者float64。 - **output** (Tensor): 默认形状为(批大小,通道数,输出特征长度),即NCDHW格式的5-D Tensor。 其数据类型与输入x相同。 返回 ::::::::: 计算AdaptiveMaxPool3d的可调用对象 抛出异常 ::::::::: - ``ValueError`` - ``output_size`` 应是一个整数或长度为3的list,tuple 代码示例 ::::::::: .. code-block:: python # adaptive max pool3d # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n], # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions # of input data into l * m * n grids averagely and performs poolings in each # grid to get output. # adaptive max pool performs calculations as follow: # # for i in range(l): # for j in range(m): # for k in range(n): # dstart = floor(i * D / l) # dend = ceil((i + 1) * D / l) # hstart = floor(j * H / m) # hend = ceil((j + 1) * H / m) # wstart = floor(k * W / n) # wend = ceil((k + 1) * W / n) # output[:, :, i, j, k] = # max(input[:, :, dstart:dend, hstart: hend, wstart: wend]) import paddle import numpy as np paddle.disable_static() input_data = np.random.rand(2, 3, 8, 32, 32) x = paddle.to_tensor(input_data) pool = paddle.nn.AdaptiveMaxPool3d(output_size=4) out = pool(x) # out shape: [2, 3, 4, 4, 4] pool, indices = paddle.nn.AdaptiveMaxPool3d(output_size=3, return_indices=True) out = pool(x) # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]