.. _cn_api_fluid_layers_piecewise_decay: piecewise_decay ------------------------------- .. py:function:: paddle.fluid.layers.piecewise_decay(boundaries,values) 对初始学习率进行分段衰减。 该算法可用如下代码描述。 .. code-block:: text boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] if step < 10000: learning_rate = 1.0 elif 10000 <= step < 20000: learning_rate = 0.5 else: learning_rate = 0.1 参数: - **boundaries(list)** - 代表步数的数字 - **values(list)** - 学习率的值,不同的步边界中的学习率值 返回:衰减的学习率 **代码示例**: .. code-block:: python import paddle.fluid as fluid boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] optimizer = fluid.optimizer.Momentum( momentum=0.9, learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values), regularization=fluid.regularizer.L2Decay(1e-4))