.. _cn_api_fluid_layers_transpose: transpose ------------------------------- .. py:function:: paddle.fluid.layers.transpose(x,perm,name=None) 该OP根据perm对输入的多维Tensor进行数据重排。返回多维Tensor的第i维对应输入Tensor的perm[i]维。 参数: - **x** (Variable) - 输入:x:[N_1, N_2, ..., N_k, D]多维Tensor,可选的数据类型为float16, float32, float64, int32, int64。 - **perm** (list) - perm长度必须和X的维度相同,并依照perm中数据进行重排。 - **name** (str) - 该层名称(可选)。 返回: 多维Tensor 返回类型:Variable **示例**: .. code-block:: python x = [[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] [[13 14 15 16] [17 18 19 20] [21 22 23 24]]] shape(x) = [2,3,4] # 例0 perm0 = [1,0,2] y_perm0 = [[[ 1 2 3 4] [13 14 15 16]] [[ 5 6 7 8] [17 18 19 20]] [[ 9 10 11 12] [21 22 23 24]]] shape(y_perm0) = [3,2,4] # 例1 perm1 = [2,1,0] y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]] [[ 2 14] [ 6 18] [10 22]] [[ 3 15] [ 7 19] [11 23]] [[ 4 16] [ 8 20] [12 24]]] shape(y_perm1) = [4,3,2] **代码示例**: .. code-block:: python # 请使用 append_batch_size=False 来避免 # 在数据张量中添加多余的batch大小维度 import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[2, 3, 4], dtype='float32', append_batch_size=False) x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2]) print x_transposed.shape #(3L, 2L, 4L)