.. _cn_api_fluid_optimizer_AdamOptimizer: AdamOptimizer ------------------------------- .. py:class:: paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, regularization=None, name=None, lazy_mode=False) 该函数实现了自适应矩估计优化器,介绍自 `Adam论文 `_ 的第二节。Adam是一阶基于梯度下降的算法,基于自适应低阶矩估计。 Adam更新如下: .. math:: \\t = t + 1 .. math:: moment\_1\_out=\beta_1∗moment\_1+(1−\beta_1)∗grad .. math:: moment\_2\_out=\beta_2∗moment\_2+(1−\beta_2)∗grad*grad .. math:: learning\_rate=\frac{learning\_rate}{1-\beta_1^t} .. math:: param\_out=param-learning\_rate*\frac{moment\_1}{\sqrt{moment\_2}+\epsilon}\\ 参数: - **learning_rate** (float|Variable)-学习率,用于更新参数。作为数据参数,可以是一个浮点类型值或有一个浮点类型值的变量 - **beta1** (float)-一阶矩估计的指数衰减率 - **beta2** (float)-二阶矩估计的指数衰减率 - **epsilon** (float)-保持数值稳定性的短浮点类型值 - **regularization** - 规则化函数,例如''fluid.regularizer.L2DecayRegularizer - **name** - 可选名称前缀 - **lazy_mode** (bool: false) - 官方Adam算法有两个移动平均累加器(moving-average accumulators)。累加器在每一步都会更新。在密集模式和稀疏模式下,两条移动平均线的每个元素都会更新。如果参数非常大,那么更新可能很慢。 lazy mode仅更新当前具有梯度的元素,所以它会更快。但是这种模式与原始的算法有不同的描述,可能会导致不同的结果。 **代码示例**: .. code-block:: python import paddle import paddle.fluid as fluid place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) adam_optimizer = fluid.optimizer.AdamOptimizer(0.01) adam_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) .. py:method:: apply_gradients(params_grads) 为给定的params_grads对附加优化算子,为minimize过程的第二步 参数: - **params_grads** (list)- 用于优化的(param, grad)对组成的列表 返回: 附加在当前Program的算子组成的列表 返回类型: list **代码示例** .. code-block:: python import paddle.fluid as fluid loss = network() optimizer = fluid.optimizer.SGD(learning_rate=0.1) params_grads = optimizer.backward(loss) # you may append operations for params_grads here # ... optimizer.apply_gradients(params_grads) .. py:method:: apply_optimize(loss, startup_program, params_grads) 为给定的params_grads对附加优化算子,为minimize过程的第二步。 参数: - **loss** (Variable) – 用于优化过程的损失值变量 - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program - **params_grads** (list)- 用于优化的(param, grad)对组成的列表 返回: 附加在当前Program的算子组成的列表 返回类型: list .. py:method:: backward(loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None) 自动做diff来向当前program附加反向算子,为minimize过程的第一步。 参数: - **loss** (Variable) – 用于优化过程的损失值变量 - **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program - **parameter_list** (list) – 待更新的Variables组成的列表 - **no_grad_set** (set|None) – 应该被无视的Variables集合 - **callbacks** (list|None) – 当为某参数附加反向算子时所要运行的callables组成的列表 返回: 附加在当前Program的算子组成的列表 返回类型: list **代码示例** 详见apply_gradients的示例 .. py:method:: load(stat_dict) 在dygraph模式下,附带学习率衰减来加载优化器。 参数: - **stat_dict** – load_persistable方法加载的dict **代码示例** .. code-block:: python from __future__ import print_function import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.dygraph.nn import FC from paddle.fluid.dygraph.base import to_variable class MLP(fluid.Layer): def __init__(self, name_scope): super(MLP, self).__init__(name_scope) self._fc1 = FC(self.full_name(), 10) self._fc2 = FC(self.full_name(), 10) def forward(self, inputs): y = self._fc1(inputs) y = self._fc2(y) return y with fluid.dygraph.guard(): mlp = MLP('mlp') optimizer2 = SGDOptimizer( learning_rate=fluid.layers.natural_exp_decay( learning_rate=0.1, decay_steps=10000, decay_rate=0.5, staircase=True)) train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=128, drop_last=True) for batch_id, data in enumerate(train_reader()): dy_x_data = np.array( [x[0].reshape(1, 28, 28) for x in data]).astype('float32') y_data = np.array([x[1] for x in data]).astype('int64').reshape( 128, 1) img = to_variable(dy_x_data) label = to_variable(y_data) label._stop_gradient = True cost = mlp(img) avg_loss = fluid.layers.reduce_mean(cost) avg_loss.backward() optimizer.minimize(avg_loss) mlp.clear_gradients() fluid.dygraph.save_persistables( mlp.state_dict(), [optimizer, optimizer2], "save_dir_2") if batch_id == 2: break with fluid.dygraph.guard(): mlp_load = MLP('mlp') optimizer_load2 = SGDOptimizer( learning_rate=fluid.layers.natural_exp_decay( learning_rate=0.1, decay_steps=10000, decay_rate=0.5, staircase=True)) parameters, optimizers = fluid.dygraph.load_persistables( "save_dir_2") mlp_load.load_dict(parameters) optimizer_load2.load(optimizers) self.assertTrue(optimizer2._learning_rate.__dict__ == optimizer_load2._learning_rate.__dict__) .. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None) 为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。 参数: - **loss** (Variable) – 需要最小化的损失值变量 - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` - **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter - **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None - **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None 返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值 返回类型: tuple **代码示例**: .. code-block:: python import numpy import paddle.fluid as fluid x = fluid.layers.data(name='X', shape=[13], dtype='float32') y = fluid.layers.data(name='Y', shape=[1], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) cost = fluid.layers.square_error_cost(input=y_predict, label=y) loss = fluid.layers.mean(cost) adam = fluid.optimizer.AdamOptimizer(learning_rate=0.2) adam.minimize(loss) place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) x = numpy.random.random(size=(10, 13)).astype('float32') y = numpy.random.random(size=(10, 1)).astype('float32') exe.run(fluid.default_startup_program()) outs = exe.run(program=fluid.default_main_program(), feed={'X': x, 'Y': y}, fetch_list=[loss.name])