.. _cn_api_paddle_tensor_meshgrid: meshgrid ------------------------------- .. py:function:: paddle.tensor.meshgrid(input, name=None) :alias_main: paddle.meshgrid :alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid 该OP的输入是tensor list, 包含 k 个一维Tensor,对每个Tensor做扩充操作,输出 k 个 k 维tensor。 参数: - **input** (Variable)- 输入变量为 k 个一维Tensor,形状分别为(N1,), (N2,), ..., (Nk, )。支持数据类型为float32,float64,int32,int64。 - **name** (str, 可选)- 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。 返回: k 个 k 维Tensor,每个Tensor的形状均为(N1, N2, ..., Nk)。 返回类型: 变量(Variable) **代码示例** .. code-block:: python #静态图示例 import paddle import paddle.fluid as fluid import numpy as np x = fluid.data(name='x', shape=[100], dtype='int32') y = fluid.data(name='y', shape=[200], dtype='int32') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid([x, y]) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) #the shape of res_1 is (100, 200) #the shape of res_2 is (100, 200) .. code-block:: python #动态图示例 import paddle import paddle.fluid as fluid import numpy as np input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') with fluid.dygraph.guard(): tensor_3 = fluid.dygraph.to_variable(input_3) tensor_4 = fluid.dygraph.to_variable(input_4) grid_x, grid_y = paddle.tensor.meshgrid([tensor_3, tensor_4]) #the shape of grid_x is (100, 200) #the shape of grid_y is (100, 200)