.. _cn_api_fluid_optimizer_AdagradOptimizer: AdagradOptimizer ------------------------------- .. py:class:: paddle.fluid.optimizer.AdagradOptimizer(learning_rate, epsilon=1e-06, parameter_list=None, regularization=None, grad_clip=None, name=None, initial_accumulator_value=0.0) :alias_main: paddle.optimizer.AdagradOptimizer :alias: paddle.optimizer.AdagradOptimizer :old_api: paddle.fluid.optimizer.AdagradOptimizer Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针对不同参数样本数不平均的问题,自适应地为各个参数分配不同的学习率。 其参数更新的计算过程如下: .. math:: moment\_out &= moment + grad * grad\\param\_out &= param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} 相关论文:`Adaptive Subgradient Methods for Online Learning and Stochastic Optimization `_。 原始论文的算法中没有引入上述公式中的 ``epsilon`` 属性,此处引入该属性用于维持数值稳定性,避免除0错误发生。 引入epsilon参数依据:`Per-parameter adaptive learning rate methods `_。 参数: - **learning_rate** (float|Variable) - 学习率,用于参数更新的计算。可以是一个浮点型值或者一个值为浮点型的Variable - **epsilon** (float, 可选) - 维持数值稳定性的浮点型值,默认值为1e-06 - **parameter_list** (list, 可选) - 指定优化器需要优化的参数。在动态图模式下必须提供该参数;在静态图模式下默认值为None,这时所有的参数都将被优化。 - **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、 :ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略; 如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。 - **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。 默认值为None,此时将不进行梯度裁剪。 - **name** (str, 可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None - **initial_accumulator_value** (float, 可选) - moment累加器的初始值,默认值为0.0 **代码示例** .. code-block:: python import numpy as np import paddle.fluid as fluid np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) out = fluid.layers.fc(inp, size=3) out = fluid.layers.reduce_sum(out) optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2) optimizer.minimize(out) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) exe.run( feed={"inp": np_inp}, fetch_list=[out.name]) .. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None) 为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。 参数: - **loss** (Variable) – 需要最小化的损失值变量 - **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program` - **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter - **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合。默认值为None 返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。 返回类型: tuple **代码示例** .. code-block:: python import numpy as np import paddle.fluid as fluid inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) out = fluid.layers.fc(inp, size=3) out = fluid.layers.reduce_sum(out) optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2) optimizer.minimize(out) np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) exe.run( feed={"inp": np_inp}, fetch_list=[out.name]) .. py:method:: clear_gradients() **注意:** **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效** 清除需要优化的参数的梯度。 **代码示例** .. code-block:: python import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value = np.arange(26).reshape(2, 13).astype("float32") a = fluid.dygraph.to_variable(value) linear = fluid.Linear(13, 5, dtype="float32") optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2, parameter_list=linear.parameters()) out = linear(a) out.backward() optimizer.minimize(out) optimizer.clear_gradients() .. py:method:: current_step_lr() **注意:** **1. 该API只在** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **模式下生效** 获取当前步骤的学习率。当不使用LearningRateDecay时,每次调用的返回值都相同,否则返回当前步骤的学习率。 返回:当前步骤的学习率。 返回类型:float **代码示例** .. code-block:: python import paddle.fluid as fluid import numpy as np # example1: LearningRateDecay is not used, return value is all the same with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters()) lr = adam.current_step_lr() print(lr) # 0.001 # example2: PiecewiseDecay is used, return the step learning rate with fluid.dygraph.guard(): inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = fluid.dygraph.nn.Linear(10, 10) inp = fluid.dygraph.to_variable(inp) out = linear(inp) loss = fluid.layers.reduce_mean(out) bd = [2, 4, 6, 8] value = [0.2, 0.4, 0.6, 0.8, 1.0] adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0), parameter_list=linear.parameters()) # first step: learning rate is 0.2 np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True # learning rate for different steps ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] for i in range(12): adam.minimize(loss) lr = adam.current_step_lr() np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True