.. _cn_api_fluid_layers_swish: swish ------------------------------- .. py:function:: paddle.fluid.layers.swish(x, beta=1.0, name=None) :alias_main: paddle.nn.functional.swish :alias: paddle.nn.functional.swish,paddle.nn.functional.activation.swish :old_api: paddle.fluid.layers.swish 逐元素计算 Swish 激活函数,参考 `Searching for Activation Functions `_ 。 .. math:: out = \frac{x}{1 + e^{- beta * x}} 参数: - **x** (Variable) - 多维 Tensor 或 LoDTensor,数据类型为 float32,float64。 - **beta** (float) - Swish operator 的常量 beta,默认值为 1.0。 - **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。 返回: - Swish op 的结果,多维 Tensor 或 LoDTensor。数据类型为 float32 或 float64,数据类型以及形状和输入 x 一致。 返回类型: - Variable **代码示例:** .. code-block:: python # 静态图使用 import numpy as np from paddle import fluid x = fluid.data(name="x", shape=(-1, 3), dtype="float32") y = fluid.layers.swish(x, beta=2.0) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() data = np.random.randn(2, 3).astype("float32") exe.run(start) y_np, = exe.run(main, feed={"x": data}, fetch_list=[y]) data # array([[-1.1239197 , 1.3391294 , 0.03921051], # [ 1.1970421 , 0.02440812, 1.2055548 ]], dtype=float32) y_np # array([[-0.2756806 , 1.0610548 , 0.01998957], # [ 0.9193261 , 0.01235299, 0.9276883 ]], dtype=float32) .. code-block:: python # 动态图使用 import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg data = np.random.randn(2, 3).astype("float32") place = fluid.CPUPlace() with dg.guard(place) as g: x = dg.to_variable(data) y = fluid.layers.swish(x) y_np = y.numpy() data # array([[-0.0816701 , 1.1603649 , -0.88325626], # [ 0.7522361 , 1.0978601 , 0.12987892]], dtype=float32) y_np # array([[-0.03916847, 0.8835007 , -0.25835553], # [ 0.51126915, 0.82324016, 0.06915068]], dtype=float32)