.. _cn_api_fluid_layers_gelu: gelu ------------------------------- .. py:function:: paddle.fluid.layers.gelu(x) :alias_main: paddle.nn.functional.gelu :alias: paddle.nn.functional.gelu,paddle.nn.functional.activation.gelu :old_api: paddle.fluid.layers.gelu 逐元素计算 Gelu激活函数。更多细节请参考 `Gaussian Error Linear Units `_ 。 如果使用近似计算: .. math:: out = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3}))) 如果不使用近似计算: .. math:: out = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}})) 参数: - **x** (Variable) - Gelu Op 的输入,多维 Tensor 或 LoDTensor,数据类型为 float32 或 float64。 - **approximate** (bool, 可选) - 是否使用近似计算,默认值为 False。 返回: - 多维 Tensor 或 LoDTensor, 数据类型为 float32 或 float64, 和输入 x 的数据类型相同,形状和输入 x 相同。 返回类型: - Variable **代码示例**: .. code-block:: python # declarative mode import numpy as np from paddle import fluid x = fluid.data(name="x", shape=(-1, 3), dtype="float32") y = fluid.layers.gelu(x) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() data = np.random.randn(2, 3).astype("float32") exe.run(start) y_np, = exe.run(main, feed={"x": data}, fetch_list=[y]) data # array([[ 0.87165993, -1.0541513 , -0.37214822], # [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32) y_np # array([[ 0.70456535, -0.15380788, -0.13207214], # [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32) .. code-block:: python # imperative mode import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg data = np.random.randn(2, 3).astype("float32") place = fluid.CPUPlace() with dg.guard(place) as g: x = dg.to_variable(data) y = fluid.layers.gelu(x) y_np = y.numpy() data # array([[ 0.87165993, -1.0541513 , -0.37214822], # [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32) y_np # array([[ 0.70456535, -0.15380788, -0.13207214], # [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32)