.. _cn_api_fluid_layers_cast: cast ------------------------------- .. py:function:: paddle.fluid.layers.cast(x,dtype) :alias_main: paddle.cast :alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast :old_api: paddle.fluid.layers.cast 该OP将 ``x`` 的数据类型转换为 ``dtype`` 并输出。支持输出和输入的数据类型相同。 参数: - **x** (Variable) - 输入的多维Tensor或LoDTensor,支持的数据类型为:bool、float16、float32、float64、uint8、int32、int64。 - **dtype** (str|np.dtype|core.VarDesc.VarType) - 输出Tensor的数据类型。支持的数据类型为:bool、float16、float32、float64、int8、int32、int64、uint8。 返回:Tensor或LoDTensor,维度与 ``x`` 相同,数据类型为 ``dtype`` 返回类型:Variable **代码示例**: .. code-block:: python import paddle.fluid as fluid import numpy as np place = fluid.core.CPUPlace() # 构建网络 x_lod = fluid.layers.data(name="x", shape=[1], lod_level=1) cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8") cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32) # 创建CPU执行器 exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x_i_lod = fluid.core.LoDTensor() x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place) x_i_lod.set_recursive_sequence_lengths([[0,2]]) res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False) res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False) print(np.array(res1[0]), np.array(res1[0]).dtype) # [[ 1 254] # [ 0 4]] uint8 print(np.array(res2[0]), np.array(res2[0]).dtype) # [[ 1 -2] # [ 0 4]] int32