################### fluid.regularizer ################### .. _cn_api_fluid_regularizer_L1Decay: L1Decay ------------------------------- .. py:attribute:: paddle.fluid.regularizer.L1Decay ``L1DecayRegularizer`` 的别名 .. _cn_api_fluid_regularizer_L1DecayRegularizer: L1DecayRegularizer ------------------------------- .. py:class:: paddle.fluid.regularizer.L1DecayRegularizer(regularization_coeff=0.0) 实现 L1 权重衰减正则化。 L1正则将会稀疏化权重矩阵。 .. math:: \\L1WeightDecay=reg\_coeff∗sign(parameter)\\ 参数: - **regularization_coeff** (float) – 正则化系数 **代码示例** .. code-block:: python import paddle.fluid as fluid main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = fluid.layers.fc(input=data, size=128, act='relu') prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = fluid.layers.mean(loss) optimizer = fluid.optimizer.Adagrad( learning_rate=1e-4, regularization=fluid.regularizer.L1DecayRegularizer( regularization_coeff=0.1)) optimizer.minimize(avg_loss) .. _cn_api_fluid_regularizer_L2Decay: L2Decay ------------------------------- .. py:attribute:: paddle.fluid.regularizer.L2Decay ``L2DecayRegularizer`` 的别名 .. _cn_api_fluid_regularizer_L2DecayRegularizer: L2DecayRegularizer ------------------------------- .. py:class:: paddle.fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0) 实现L2 权重衰减正则化。 较小的 L2 的有助于防止对训练数据的过度拟合。 .. math:: \\L2WeightDecay=reg\_coeff*parameter\\ 参数: - **regularization_coeff** (float) – 正则化系数 **代码示例** .. code-block:: python import paddle.fluid as fluid main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = fluid.layers.fc(input=data, size=128, act='relu') prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = fluid.layers.mean(loss) optimizer = fluid.optimizer.Adagrad( learning_rate=1e-4, regularization=fluid.regularizer.L2DecayRegularizer( regularization_coeff=0.1)) optimizer.minimize(avg_loss)