.. _cn_api_fluid_layers_py_func: py_func ------------------------------- .. py:function:: paddle.fluid.layers.py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None) PaddlePaddle Fluid通过该接口在Python端注册OP。所注册的Python OP的前向函数是 ``func``, 反向函数是 ``backward_func`` 。 Paddle将在前向部分调用 ``func`` ,并在反向部分调用 ``backward_func`` (如果 ``backward_func`` 不是None)。 ``x`` 为 ``func`` 的输入,必须为LoDTensor类型; ``out`` 为 ``func`` 的输出, 既可以是LoDTensor类型, 也可以是NumPy数组。 反向函数 ``backward_func`` 的输入依次为:前向输入 ``x`` 、前向输出 ``out`` 、 ``out`` 的梯度。 如果 ``out`` 的某些变量没有梯度,则 ``backward_func`` 的相关输入变量为None。如果 ``x`` 的某些变量没有梯度,则用户应在 ``backward_func`` 中主动返回None。 在调用该接口之前,还应正确设置 ``out`` 的数据类型和形状,而 ``out`` 和 ``x`` 对应梯度的数据类型和形状将自动推断而出。 此功能还可用于调试正在运行的网络,可以通过添加没有输出的 ``py_func`` 运算,并在 ``func`` 中打印输入 ``x`` 。 参数: - **func** (callable) - 所注册的Python OP的前向函数,运行网络时,将根据该函数与前向输入 ``x`` ,计算前向输出 ``out`` 。 - **x** (Variable) - 前向函数 ``func`` 的输入,可以为 Variable | tuple[Variable] | list[Variale], 其中 Variable 为LoDTensor类型。 - **out** (Variable) - 前向函数 ``func`` 输出,可以为 Variable | tuple[Variable] | list[Variale],其中 Variable 既可以为LoDTensor类型,也可以为NumPy数组。由于Paddle无法自动推断 ``out`` 的形状和数据类型,必须应事先创建 ``out`` 。 - **backward_func** (callable,可选) - 所注册的Python OP的反向函数。默认值为None,意味着没有反向计算。若不为None,则会在运行网络反向时调用 ``backward_func`` 计算 ``x`` 的梯度。 - **skip_vars_in_backward_input** (Variable,可选) - ``backward_func`` 的输入中不需要的变量,可以是 单个Variable | list[Variable] | tuple[Variable]。 这些变量必须是 ``x`` 和 ``out`` 中的一个。默认值为None,意味着没有变量需要从 ``x`` 和 ``out`` 中去除。若不为None,则这些变量将不是 ``backward_func`` 的输入。该参数仅在 ``backward_func`` 不为None时有用。 返回: 前向函数的输出 ``out`` 返回类型: Variable | list[Variable] | tuple[Variable] **代码示例**: .. code-block:: python import paddle.fluid as fluid import six def create_tmp_var(name, dtype, shape): return fluid.default_main_program().current_block().create_var( name=name, dtype=dtype, shape=shape) # Paddle C++ op提供的tanh激活函数 # 此处仅采用tanh作为示例展示py_func的使用方法 def tanh(x): return np.tanh(x) # 跳过前向输入x def tanh_grad(y, dy): return np.array(dy) * (1 - np.square(np.array(y))) def debug_func(x): print(x) def simple_net(img, label): hidden = img for idx in six.moves.range(4): hidden = fluid.layers.fc(hidden, size=200) new_hidden = create_tmp_var(name='hidden_{}'.format(idx), dtype=hidden.dtype, shape=hidden.shape) # 用户自定义的前向反向计算 hidden = fluid.layers.py_func(func=tanh, x=hidden, out=new_hidden, backward_func=tanh_grad, skip_vars_in_backward_input=hidden) # 用户自定义的调试层,可以打印出变量细则 fluid.layers.py_func(func=debug_func, x=hidden, out=None) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) return fluid.layers.mean(loss)