################# fluid.initializer ################# .. _cn_api_fluid_initializer_Bilinear: Bilinear >>>>>>>>>>> .. py:function:: paddle.fluid.initializer.Bilinear ``BilinearInitializer``的别名 .. _cn_api_fluid_initializer_BilinearInitializer: BilinearInitializer >>>>>>>>>>>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.BilinearInitializer 该初始化函数用于转置卷积函数,进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。用法如下: **代码示例**: .. code-block:: python factor = 2 w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.), initializer=Bilinear()) conv_up = fluid.layers.conv2d_transpose( input, num_filters=C, output_size=None, filter_size=2 * factor - factor % 2, padding=ceil((factor - 1) / 2.), stride=factor, groups=C, param_attr=w_attr, bias_attr=False) num_filters = C和groups = C 表示这是按通道转置的卷积函数。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factor*H,factor*W)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变 英文版API文档: :ref:`api_fluid_initializer_BilinearInitializer` .. _cn_api_fluid_initializer_Constant: Constant >>>>>>>>>> .. py:function:: paddle.fluid.initializer.Constant ``ConstantInitializer``的别名 .. _cn_api_fluid_initializer_ConstantInitializer: ConstantInitializer >>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.ConstantInitializer(value=0.0, force_cpu=False) 常量初始器 参数: - **value** (float) - 用常量初始化变量 **代码示例** .. code-block:: python fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.Constant(value=2.0)) 英文版API文档: :ref:`api_fluid_initializer_ConstantInitializer` .. _cn_api_fluid_initializer_force_init_on_cpu: force_init_on_cpu >>>>>>>>>>>>>>>>>>> .. py:function:: paddle.fluid.initializer.force_init_on_cpu() 标志位,是否强制在CPU上进行变量初始化。 返回:状态,是否应强制在CPU上强制进行变量初始化 返回类型:bool **代码示例**: .. code-block:: python if force_init_on_cpu(): create_op('force_cpu': force_init_on_cpu()) 英文版API文档: :ref:`api_fluid_initializer_force_init_on_cpu` .. _cn_api_fluid_initializer_init_on_cpu: init_on_cpu >>>>>>>>>>>> .. py:function:: paddle.fluid.initializer.init_on_cpu(*args, **kwds) 强制变量在 cpu 上初始化。 **代码示例** .. code-block:: python with init_on_cpu(): step = layers.create_global_var() 英文版API文档: :ref:`api_fluid_initializer_init_on_cpu` .. _cn_api_fluid_initializer_MSRA: MSRA >>>>>> .. py:function:: paddle.fluid.initializer.MSRA ``MSRAInitializer``的别名 .. _cn_api_fluid_initializer_MSRAInitializer: MSRAInitializer >>>>>>>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.MSRAInitializer(uniform=True, fan_in=None, seed=0) 实现MSRA初始化(a.k.a. Kaiming初始化) 该类实现权重初始化方法,方法来自Kaiming He,Xiangyu Zhang,Shaoqing Ren 和 Jian Sun所写的论文: `Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification `_ 。这是一个鲁棒性特别强的初始化方法,并且适应了非线性激活函数(rectifier nonlinearities)。 在均匀分布中,范围为[-x,x],其中: .. math:: x = \sqrt{\frac{6.0}{fan\_in}} 在正态分布中,均值为0,标准差为: .. math:: \sqrt{\frac{2.0}{fan\_in}} 参数: - **uniform** (bool) - 是否用均匀分布或正态分布 - **fan_in** (float) - MSRAInitializer的fan_in。如果为None,fan_in沿伸自变量 - **seed** (int) - 随机种子 .. note:: 在大多数情况下推荐设置fan_in为None **代码示例**: .. code-block:: python fc = fluid.layers.fc( input=queries, size=10, param_attr=fluid.initializer.MSRA(uniform=False)) 英文版API文档: :ref:`api_fluid_initializer_MSRAInitializer` .. _cn_api_fluid_initializer_Normal: Normal >>>>>>>> .. py:function:: paddle.fluid.initializer.Normal ``NormalInitializer``的别名 .. _cn_api_fluid_initializer_NormalInitializer: NormalInitializer >>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.NormalInitializer(loc=0.0, scale=1.0, seed=0) 随机正态(高斯)分布初始化器 参数: - **loc** (float) - 正态分布的平均值 - **scale** (float) - 正态分布的标准差 - **seed** (int) - 随机种子 **代码示例** .. code-block:: python fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0) 英文版API文档: :ref:`api_fluid_initializer_NormalInitializer` .. _cn_api_fluid_initializer_TruncatedNormal: TruncatedNormal >>>>>>>>>>>>>>>>> .. py:function:: paddle.fluid.initializer.TruncatedNormal ``TruncatedNormalInitializer``的别名 .. _cn_api_fluid_initializer_TruncatedNormalInitializer: TruncatedNormalInitializer >>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.TruncatedNormalInitializer(loc=0.0, scale=1.0, seed=0) Random Truncated Normal(高斯)分布初始化器 参数: - **loc** (float) - 正态分布的平均值 - **scale** (float) - 正态分布的标准差 - **seed** (int) - 随机种子 **代码示例** .. code-block:: python fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0)) 英文版API文档: :ref:`api_fluid_initializer_TruncatedNormalInitializer` .. _cn_api_fluid_initializer_Uniform: Uniform >>>>>>>>> .. _cn_api_fluid_initializer_UniformInitializer: .. py:class:: paddle.fluid.initializer.Uniform ``UniformInitializer``的别名 UniformInitializer >>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0) 随机均匀分布初始化器 参数: - **low** (float) - 下界 - **high** (float) - 上界 - **seed** (float) - 随机种子 **代码示例** .. code-block:: python fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5)) 英文版API文档: :ref:`api_fluid_initializer_UniformInitializer` .. _api_fluid_initializer_Xavier: Xavier >>>>>>>>> .. py:function:: paddle.fluid.initializer.Xavier ``XavierInitializer``的别名 .. _cn_api_fluid_initializer_XavierInitializer: XavierInitializer >>>>>>>>>>>>>>>>>>> .. py:class:: paddle.fluid.initializer.XavierInitializer(uniform=True, fan_in=None, fan_out=None, seed=0) 该类实现Xavier权重初始化方法( Xavier weight initializer),Xavier权重初始化方法出自Xavier Glorot和Yoshua Bengio的论文 `Understanding the difficulty of training deep feedforward neural networks `_ 该初始化函数用于保持所有层的梯度尺度几乎一致。 在均匀分布的情况下,取值范围为[-x,x],其中: .. math:: x = \sqrt{\frac{6.0}{fan\_in+fan\_out}} 正态分布的情况下,均值为0,标准差为: .. math:: x = \sqrt{\frac{2.0}{fan\_in+fan\_out}} 参数: - **uniform** (bool) - 是否用均匀分布或者正态分布 - **fan_in** (float) - 用于Xavier初始化的fan_in。如果为None,fan_in沿伸自变量 - **fan_out** (float) - 用于Xavier初始化的fan_out。如果为None,fan_out沿伸自变量 - **seed** (int) - 随机种子 .. note:: 在大多数情况下推荐将fan_in和fan_out设置为None **代码示例**: .. code-block:: python fc = fluid.layers.fc( input=queries, size=10, param_attr=fluid.initializer.Xavier(uniform=False)) 英文版API文档: :ref:`api_fluid_initializer_XavierInitializer`